
Institut für Informatik

19th International Workshop on
Cellular Automata and
Discrete Complex Systems

AUTOMATA 2013

Exploratory Papers

Jarkko Kari, Martin Kutrib, Andreas Malcher (eds.)

Giessen, Germany
September 17 – 19, 2013

IFIG Research Report 1302

Title: Proceedings 19th International Workshop on Cellular Automata and
Discrete Complex Systems (AUTOMATA 2013) – Exploratory Papers

IFIG Research Report 1302

Published by: Institut für Informatik
Universität Gießen
Arndtstraße 2
35392 Gießen
Germany

Edited by c© Jarkko Kari, Martin Kutrib, Andreas Malcher, 2013

Copyright c© Authors of the contributions, 2013

Published in September 2013

Preface

AUTOMATA 2013 is the 19th International Workshop on Cellular Automa-
ta and Discrete Complex Systems and continues a series of events established
in 1995. AUTOMATA is an annual workshop and aims of the workshop are:

• To establish and maintain a permanent, international, multidiscipli-
nary forum for the collaboration of researchers in the field of Cellular
Automata (CA) and Discrete Complex Systems (DCS).

• To provide a platform for presenting and discussing new ideas and
results.

• To support the development of theory and applications of CA and DCS
(e.g. parallel computing, physics, biology, social sciences, and others)
as long as fundamental aspects and their relations are concerned.

• To identify and study within an inter- and multidisciplinary context,
the important fundamental aspects, concepts, notions and problems
concerning CA and DCS.

AUTOMATA 2013 was organized by the Institut für Informatik of the Uni-
versität Giessen and took place place at the campus of natural sciences. It
was a three-day workshop from September 17 to September 19, 2013.
This volume contains the accepted exploratory papers of AUTOMATA 2013.
We would like to thank all authors for their contributions. The accepted
exploratory papers were selected by the Program Committee and we are
grateful to all members of the Program Committee for their excellent work
in making this selection.
We are also grateful to the additional members of the Organizing Committee
consisting of Susanne Gretschel, Markus Holzer, Sebastian Jakobi, Katja
Meckel, Julien Provillard, Heinz Rübeling, and Matthias Wendlandt for their
support of the sessions and the accompanying events.
Finally, we are indebted to all participants for attending the workshop. We
hope that this workshop will be a successful and fruitful meeting, will bear
new ideas for investigations, and will bring together people for new scientific
collaborations.

Giessen, September 2013 Jarkko Kari
Martin Kutrib
Andreas Malcher

Table of Contents

Preface 1

Table of Contents 3

Program 5

Workshop AUTOMATA 2013 – Exploratory Papers

Witold Bo lt, Jan M. Baetens, and Bernard De Baets
Identifying CAs with evolutionary algorithms . 11

Tetsuo Imai and Atsushi Tanaka
Analysis of discrete state space partitioned by the attractors of the
dynamic network formation game model . 21

Jarkko Kari, Ville Salo, and Ilkka Törmä
Surjective Two-Neighbor Cellular Automata on Prime Alphabets 31

Jarkko Kari and Kuize Zhang
Two transitive cellular automata and their strictly temporally
periodic points . 39

Alexander Makarenko
Cellular Automata with Strong Anticipation Property of Elements . . 49

Pedro Montealegre and Eric Goles
Computational complexity of majority automata under different
updating schemes . 57

4 Table of Contents

Nazma Naskar, Sumit Adak, and Sukanta Das
Identification of Non-Uniform Periodic Boundary Cellular Automata
having only Point States . 67

Shigeru Ninagawa and Genaro Mart́ınez
Complexity Analysis in Cyclic Tag System Emulated by Rule 110 . . . 77

Biswanath Sethi, Souvik Roy, and Sukanta Das
Experimental study on convergence time of elementary cellular
automata under asynchronous update . 87

Véronique Terrier
Linear acceleration for one-dimensional cellular automata 97

Thomas Worsch
Standardizing the set of states and the neighborhood of
asynchronous cellular automata . 107

Author Index 119

Program

Thuesday, September 17, 2013

08.50 – 09.00 Opening

09.00 – 10.00 Invited talk:

Pedro de Oliveira

Conceptual connections around density determination

in cellular automata

10.00 – 10.30 Coffee break

10.30 – 11.00 Olivier Bouré, Nazim Fatès, Vincent Chevrier

A robustness approach to study metastable behaviours in

a lattice-gas model of swarming

11.00 – 11.30 Ramon Alonso-Sanz

Elementary cellular automata with memory of delay type

11.30 – 11.50 Witold Bo lt, Jan M. Baetens, Bernard De Baets

Identifying CAs with evolutionary algorithms

11.50 – 14.00 Lunch

14.00 – 14.30 Ville Salo and Ilkka Törmä

Commutators of bipermutive and affine cellular automata

14.30 – 15.00 Alberto Leporati and Luca Mariot

1-Resiliency of bipermutive cellular automata rules

15.00 – 15.20 Jarkko Kari and Kuize Zhang

Two transitive cellular automata and their strictly

temporally periodic points

15.20 – 15.50 Coffee break

6 Program

15.50 – 16.10 Véronique Terrier

Linear acceleration for one-dimensional cellular automata

16.10 – 16.30 Thomas Worsch

Standardizing the set of states and the neighborhood of

asynchronous cellular automata

18.00 Welcome Reception

Wednesday, September 18, 2013

09.00 – 10.00 Invited talk:

Enrico Formenti

Exploring m-asynchronous cellular automata

10.00 – 10.30 Coffee break

10.30 – 11.00 Fritz von Haeseler, Hidenosuke Nishio

On polynomial rings in information dynamics of linear CA

11.00 – 11.30 Ville Salo and Ilkka Törmä

Color blind cellular automata

11.30 – 11.50 Jarkko Kari, Ville Salo and Ilkka Törmä

Surjective two-neighbor cellular automata on

prime alphabets

11.50 – 14.00 Lunch

14.00 – 15.00 Invited tutorial:

Nazim Fatès

Turing, symmetry breakings and patterns – A tutorial

on stochastic cellular automata

15.00 – 15.30 Coffee break

15.30 – 15.50 Biswanath Sethi, Souvik Roy, Sukanta Das

Experimental study on convergence time of elementary

cellular automata under asynchronous update

Program 7

15.50 – 16.10 Tetsuo Imai, Atsushi Tanaka

Analysis of discrete state space partitioned by the

attractors of the dynamic network formation game model

16.10 – 16.30 Shigeru Ninagawa, Genaro Martinez

Complexity analysis in cyclic tag system emulated by

rule 110

16.45 – 17.30 Business meeting of IFIP WG 1.5

17.45 Visit of a brewery

Thursday, September 19, 2013

10.00 – 11.00 Invited talk:

Nazim Fatès

A guided tour of asynchronous and stochastic cellular

automata – A constructive role of randomness?

11.00 – 11.30 Coffee break

11.30 – 12.00 Tarek Melliti, Damien Regnault, Adrien Richard,

Sylvain Sené

On the convergence of Boolean automata networks

without negative cycles

12.00 – 12.20 Pedro Montealegre, Eric Goles

Computational complexity of majority automata under

different updating schemes

12.20 – 14.30 Lunch

14.30 – 15.00 Sandip Karmakar, Dipanwita Roy Chowdhury

Leakage squeezing using cellular automata

8 Program

15.00 – 15.20 Nazma Naskar, Sumit Adak, Sukanta Das

Identification of non-uniform periodic boundary cellular

automata having only point states

15.20 – 15.40 Oleksandr Makarenko

Cellular automata with strong anticipation property

of elements

19.00 Workshop Dinner

Workshop AUTOMATA 2013 – Exploratory Papers

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 11

Identifying CAs with evolutionary algorithms

Witold Bo lt1,2, Jan M. Baetens1, and Bernard De Baets1

1KERMIT, Department of Mathematical Modelling, Statistics and
Bioinformatics, Ghent University, Ghent, Belgium

2Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

e-mail: witold.bolt@hope.art.pl

Abstract

Cellular Automata (CA) identification from an incomplete time series
of CA configurations is considered. A flexible evolutionary algorithm
for identification is developed and its performance is checked for a
simplified setting in which one can rely on a complete time series of
configurations. Ideas for extension to the case in which some time
frames are missing are presented and commented. The description is
accompanied with results including a brief analysis of Elementary CAs
(ECA) discoverability.

1 Introduction

Cellular Automata (CAs) present an attractive and effective modeling tech-
nique for a variety of problems. In order to use CAs in any practical mod-
eling task, one needs to understand the underlying rules, relevant to the
given phenomenon, and translate them into a CA local rule. Additionally,
the state space, tessellation and neighborhood structure need to be pinned
down beforehand. This narrows the application area for CAs, since there are
problems for which only the initial and final states are known (e.g. [2,13,14]).
Such problems motivate the research towards automated CA identification.
Various methods have been used, including genetic algorithms [6,11,12,15],
genetic programming [3, 4, 10], gene expression programming [7], ant intel-
ligence [9], machine learning [5] as well as direct search/construction ap-
proaches [1, 16–18].

Existing methods can be divided into two main groups. Firstly, meth-
ods for solving problems like the majority classification in which we only
know the initial condition and desired outcome and, secondly, methods that
exploit the entire time series of configurations, where it is assumed that all

12 W. Bo lt, J. M. Baetens, B. De Baets

configurations are known. Only limited research efforts have been devoted
to problems involving an incomplete spatio–temporal image [12].

In this exploratory paper we outline a Genetic Algorithm (GA) for un-
covering CA rules from a time series of CA configurations. The proposed
method is flexible enough to handle cases of noisy and incomplete time se-
ries. Although direct approaches for constructing CA from data exist, they
are of no use in such case, due to their requirements on completeness of the
data.

The paper is organized as follows. In Section 2 we formalize the iden-
tification problem. In Section 3 we describe the search algorithm, while in
Section 4 the results and performance evaluation. We conclude this paper
with comments on future research goals and extensions to the algorithm.

2 Problem setting

Let I = (It,s) for t ∈ T , s ∈ S = {0, 1, . . . , S}, be a binary image, i.e. for
every t, s we have: It,s ∈ {0, 1}. The indices t, s refer to positions in time
and space, respectively. The time domain T is a subset of {0, 1, . . . , T} that
includes 0. We will also write It := (It,s)s∈S to denote the t-th row of the
image (the t-th time step). In this paper image refers to the space–time
diagram of a CA, i.e. bit string It denotes the configuration after iterating
the CA t times starting from the initial condition I0. Let I = {I(j) | j ∈ J }
be a set of images, where for each j ∈ J , we have I(j) = (I

(j)
t,s), t ∈ Tj , s ∈ Sj .

We will refer to this set as the “test set”.
We consider the following identification problem: for a given test set I,

find 1D, two-state, deterministic CA A , with a symmetric neighborhood of
radius r and periodic boundary conditions, that can reproduce the images
in I. If we use A to denote the global rule (global function) of automaton
A , this question boils down to finding a function A such that:

∑

j∈J

∑

t∈Tj

∑

s∈Sj

∣∣∣I(j)t,s −At
(
I
(j)
0

)
[s]
∣∣∣ = 0, (1)

where At(I
(j)
0)[s] denotes the s-th position in the vector resulting from ap-

plying the CA rule t times starting from the initial condition I
(j)
0 .

Obviously, for many test sets there is no CA that satisfies (1). For this
reason it is advisable to widen the scope of the identification problem, in
such a way that the goal becomes to find a CA that minimizes the error
given by:

E(A, I) :=
∑

j∈J

∑

t∈Tj

∑

s∈Sj

∣∣∣I(j)t,s −At
(
I
(j)
0

)
[s]
∣∣∣ . (2)

As noted in the Section 1, the identification problem at stake can be
solved directly, i.e. without relying on heuristic search techniques, when

Identifying CAs with evolutionary algorithms 13

T = {0, . . . , T}, and the test set is known to be generated by some unknown
CA. This even holds in cases where the neighborhood structure is unknown
[16,17].

The goal of this research is to establish methods for solving the iden-
tification problem in more complicated cases, such as the one for which
T ({0, 1, . . . , T} and only the ordering of elements of T is known, or those
for which the images in the test set are noisy. Such problems justify the use
of evolutionary search techniques in order to minimize (2).

In this introductory paper we validate the evolutionary search approach
for simple problems, being those which could be solved directly, to show
that the method produces meaningful results. For the sake of simplicity, we
assume throughout the remaining sections that T = {0, 1, . . . , T} and that
the neighborhood radius is known to be r ≥ 0. Additionally, we consider
only one test image I in the test set I, which is known to be generated by
some CA with neighborhood of radius not higher than r. Such a problem is
known to have at least one “perfect” solution A satisfying: E(A, I) = 0.

3 Genetic Algorithm outline

We will use a well-established heuristic search technique, namely a GA [8],
to search for solutions of our problem. To apply GA, we need to define:
(a) the elements of the population and their representation, (b) a fitness
function to rank individuals and (c) the genetic operators to evolve the
populations.

(a) The populations consist of CAs encoded by the local rule’s lookup
table (LUT), which can be stored as a fixed-length bit string. Since the
radius is known to be r, the length of such a string is N = 22 r+1. So if A
is an element of the population, then A = (a1, a2, . . . , aN) and ai ∈ {0, 1}.
We will use fixed-size populations of C individuals.

By means of Pi we will denote the population at the i-th iteration of
the GA. Population P0 is created by selecting uniformly at random, binary
vectors of length N , while populations Pi for i > 0 are composed using the
genetic operators defined below.

(b) Typically, the goal of a GA is to maximize a predefined fitness func-
tion. Here, the fitness function should correspond to the error function
E(A, I) defined in (2). For technical reasons it is desirable to normalize
fitness values to the unit interval. The most natural choice for the fitness
function, which suits those needs, would be the ratio of cells in the image that
have the same states as the ones in the corresponding CA’s spatio–temporal
diagram to the total number of cells S, and this for each consecutive time
step. Formally, such a fitness function could be expressed as:

fitE(A) := 1− E(A, I)

T S
. (3)

14 W. Bo lt, J. M. Baetens, B. De Baets

At first rather surprisingly, we found this fitness function not to work, which
can however be understood by acknowledging that errors propagate and
amplify in time. So, even though the sum

∑
s∈S

∣∣It,s −At (I0) [s]
∣∣ for small

t might be small, generally it grows with time, because of the errors at
previous time steps. In some sense, we are accounting for the same errors
multiple times.

To overcome this shortcoming a new fitness function was constructed,
which considers pairs of consecutive configurations, and thereby eliminates
the impact of error propagation. Its formula is given by:

fit(A) := 1− 1

(T − 1)S

∑

t∈T \{0}

∑

s∈S
|It,s −A(It−1)[s]| . (4)

Note that if A is a local rule of a CA, then E(A, I) = 0 if and only if
fit(A) = 1. Hence, when a perfect solution exists, maximizing fit is equiva-
lent to solving E(A, I) = 0. Otherwise, it might happen that the maximum
of fit doesn’t match the minimum of E, but still the results obtained from
maximizing fit might be meaningful. Also note that the fitness defined by
(4) is closely related to formula (7) in [16], which is used in a direct search
of the LUT entries.

(c) Having defined the fitness function, we now turn to the definition of
the genetic operators.

Selection and reproduction – those operators are responsible for se-
lecting individuals from population Pi−1 to build population Pi. We select
individuals at random, with a selection probability weighted with the fitness
value. We make 2C selections (to pick parents) and from each pair, we build
one offspring rule that ends up in Pi.

Cross–over – assume that R and Q are two individuals selected from
Pi−1 for which holds that R = (rk) and Q = (qk). The resulting rule
Z = (zk) is built by randomly selecting bits from R or Q, such that
zk ∈ {rk, qk} with a selection probability pc for zk = rk and 1 − pc for
zk = qk.

Mutation is done by inverting (flipping) one randomly selected bit in
the LUT and is applied to the rule produced by cross–over. The mutation
is applied with probability pm.

In summary, the algorithm starts by randomly creating population P0.
Then the fitness values are calculated for each of the individuals and the
aforementioned genetic operators are used to build P1. This process is re-
peated until a perfect solution is found (with fitness equal to 1) or a pre-
defined number of M iterations has been taken. In the latter case, the
algorithm returns the individual with the highest fitness.

In practice, we often used a slightly modified variant of the algorithm
that assures the preservation of the fittest individuals. For that purpose
we use a basic elitist survival scheme: after evolving Pi we pick CE � C

Identifying CAs with evolutionary algorithms 15

of the fittest individuals from Pi−1 and place them at random positions in
Pi replacing the formerly evolved individuals. In the reminder, this variant
will be referred to as Algorithm E, whereas the original one will be named
Algorithm NE.

Although both algorithms rely on the presumption that the neighbor-
hood radius is known, they can be adjusted easily to detect the radius (al-
though the resulting value won’t be optimal). To achieve this, we have
to add two mutation operators, namely: up–scale and down–scale muta-
tion. The former translates the rule’s LUT from radius r to r + 1, whereas
the down–scale mutation does exactly the opposite. Up–scale mutation is
uniquely defined, while for its down–scale counterpart, for most of the rules,
the result is not uniquely defined, and thus one of the possibilities is picked
randomly. In addition to those operators, also the cross–over operator needs
to be adjusted. This can be accomplished straightforwardly by taking the
largest of the two individuals’ radii before applying cross–over. Clearly, an
upper and lower bound has to be defined for this procedure to work.

4 Performance of the GA

4.1 Test Case 1: Rule 154

The simplest test case is based on an image generated by ECA rule 154.
Obviously, looking for radius 1 rules with a GA is not going to lead to
results of practical interest because all of the 256 elementary rules could be
evaluated in the first few GA iterations. For that reason, we looked for radius
2 rules that can evolve the image generated by rule 154. Algorithm NE was
used with the following parameter values, which were tuned based upon a
preliminary simulation study: pc = 0.5, pm = 0.02, C = 100, T = 100 and
S = 100. The initial condition (I0) was a random binary vector. Figure 1
depicts the fitness evolution during one exemplary GA life-cycle in which
the perfect solution was found in 128 iterations. As can be seen on the plot,
almost all iterations produced fitter individuals (on average), which hints
that indeed the algorithm is convergent.

4.2 Discoverability of radius 1 rules

In this experiment we evaluated the 256 ECA rules using algorithm NE.
Parameters of the algorithm were set to the same values as in Test Case 1.
The maximum number of GA iterations was M = 5000. Similarly to Test
Case 1, the goal was to find a radius 2 rule that can evolve the test image.
The same initial condition was used for all rules. Based upon 30 runs,
we measured the discoverability ratio expressed as a percentage, i.e. the
percentage of runs in which a perfect solution was found. Additionally, we
measured the average number of GA iterations needed to halt the algorithm.

16 W. Bo lt, J. M. Baetens, B. De Baets

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

fit
ne

ss

iteration no.

max
avg
min

Figure 1: Evolution of the maximum, average and minimum fitness in Test
Case 1.

rule avg. iter. discoverability

75 49.57 100%
30 53.10 100%
169 53.63 100%
165 53.80 100%
106 54.77 100%

(a)

rule avg. iter. discoverability

245 4997.23 3.33%
98 4993.47 3.33%
188 4987.80 3.33%
6 4982.07 3.33%
43 4981.33 3.33%

(b)

Table 1: Rule discoverability and average number of iterations for those ECA
that give rise to the ten lowest (a) and highest (b) numbers of iterations.

Out of the 256 examined rules, 88 rules have zero discoverability and
42 rules have 100% discoverability. Average discoverability was found to be
31.38%. Results for the top 5 rules with both the highest and lowest number
of iterations are shown in Table 1. Note that for the latter set of rules, we
only consider rules that have discoverability greater than 0%, as those with
zero discoverability obviously always required the maximum number of 5000
iterations.

Establishing more detailed discoverability measures and relating them
to complexity measures is one of the topics of our current research.

4.3 Test Case 2: Radius 4 rule

Similar to Test Case 1, we examined an image generated by a CA rule, but
in this case it was a randomly selected, radius 4 rule. Parameters for this

Identifying CAs with evolutionary algorithms 17

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500

fit
ne

ss

iteration no.

max
avg
min

(a) Algorithm NE

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

fit
ne

ss

iteration no.

max
avg
min

(b) Algorithm E

Figure 2: Evolution of maximum, average and minimum fitness in Test Case
2.

test case were set to: pc = 0.5, pm = 0.02, C = 5000, T = 200, S = 200 and
M = 20000. Due to the complexity of the problem (for radius 4 the LUT bit
strings contain 512 bits, compared to 32 bits in case of radius 2) the value of
parameter C was increased compared to previous experiments. In this ex-
periment we compared the performance of Algorithms E and NE (with elite
size CE = 500 for Algorithm E). Figure 2 shows exemplary fitness evolutions
for both cases. To get a deeper understanding of differences between the two
algorithms we ran this test case 30 times with both algorithms. It turned
out that the average number of iterations required for Algorithm E was 132,
while Algorithm NE needed 4259 iterations on average. Clearly, introducing
elite preservation strongly improves the performance in this case.

5 Future work

As noted earlier the ultimate goal of the ongoing research is to infer the
underlying rule if some time steps are missing in the test image. The method
presented in Section 3 will be extended to support such cases. First of all,
the fitness function has to be revised. Since the elements of T are unknown,
we pick a value tmax > 0 representing the maximum time gap size, i.e. for
all i we assume that ti+1− ti < tmax. Then, for each i we calculate one–step
error values:

Ei,j(A, I) :=
∑

s∈S

∣∣Iti,s −Rj(Iti)[s]
∣∣ , (5)

for j ∈ {1, 2, . . . , tmax} and we define the i-th step error as:

Ei(A, I) := min
j

Ei,j(A, I). (6)

18 W. Bo lt, J. M. Baetens, B. De Baets

After that we can express the adjusted fitness function as:

fît(A, I) := 1− 1

(T − 1)S

∑

i

Ei(A, I). (7)

Note that, by optimizing the fitness function, we will get both the rule
and the elements of T , by taking: ti+1 := ti + arg minj Ei,j(A, I). In case
of a complete time series the fitness defined by (4) is equivalent to taking
tmax = 1 in (7).

One could search for rules using the algorithm described in Section 3
and fitness function defined above, but our initial findings show that the
performance of such an algorithm is relatively poor. Since the fitness func-
tion given by (7) uses all information contained in the image, further work
needs to be concentrated on other parts of the algorithm. For instance,
ongoing research concentrates more on flexible rule representation, new ge-
netic operators and rules of evolving populations. Preliminary results are
very promising, but still quite some effort is required to fully understand and
overcome the problems in searching for rules in the incomplete image setting.
Aside from the algorithm itself, some efforts are spent to a characterization
of the uniqueness of solutions in different settings.

6 Summary

We briefly presented a simple, yet effective and flexible, genetic algorithm for
searching CA rules matching an arbitrary test image set. We demonstrated
that the presented method works for simple cases of ECAs as well as for
some higher radius rules. Future research will be devoted towards applying
the method to more general cases.

Acknowledgments

Witold Bo lt is supported by the Foundation for Polish Science under “In-
ternational PhD Projects in Intelligent Computing”. Project is financed
by The European Union within the Innovative Economy Operational Pro-
gramme 2007–2013 and European Regional Development Fund.

References

[1] Adamatzky, A.: Identification Of Cellular Automata. Taylor & Francis
Group (1994)

[2] Al-Kheder, S., Wang, J., Shan, J.: Cellular automata urban growth
model calibration with genetic algorithms. In: Urban Remote Sensing
Joint Event, 2007. pp. 1–5. IEEE (2007)

Identifying CAs with evolutionary algorithms 19

[3] Andre, D., Bennett III, F.H., Koza, J.R.: Discovery by genetic pro-
gramming of a cellular automata rule that is better than any known rule
for the majority classification problem. In: Proceedings of the First An-
nual Conference on Genetic Programming. pp. 3–11. MIT Press (1996)

[4] Bandini, S., Manzoni, S., Vanneschi, L.: Evolving robust cellular au-
tomata rules with genetic programming. In: Adamatzky, A., Alonso-
Sanz, R., Lawniczak, A.T., Mart́ınez, G.J., Morita, K., Worsch, T.
(eds.) Automata. pp. 542–556. Luniver Press, Frome, UK (2008)

[5] Bull, L., Adamatzky, A.: A learning classifier system approach to the
identification of cellular automata. J. Cellular Automata 2(1), 21–38
(2007)

[6] Bäck, T., Breukelaar, R., Willmes, L.: Inverse design of cellular
automata by genetic algorithms: An unconventional programming
paradigm. In: Banâtre, J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.)
Unconventional Programming Paradigms, Lecture Notes in Computer
Science, vol. 3566, pp. 161–172. Springer Berlin Heidelberg (2005)

[7] Ferreira, C.: Gene expression programming: a new adaptive algorithm
for solving problems. CoRR cs.AI/0102027 (2001)

[8] Holland, J.: Adaptation in natural and artificial systems: an introduc-
tory analysis with applications to biology, control, and artificial intelli-
gence. University of Michigan Press (1975)

[9] Liu, X., Li, X., Liu, L., He, J., Ai, B.: A bottom-up approach to
discover transition rules of cellular automata using ant intelligence. Int.
J. Geogr. Inf. Sci. 22(11-12), 1247–1269 (2008)

[10] Maeda, K., Sakama, C.: Identifying cellular automata rules. J. Cellular
Automata 2(1), 1–20 (2007)

[11] Mitchell, M., Crutchfield, J.P., Das, R., et al.: Evolving cellular au-
tomata with genetic algorithms: A review of recent work. In: Proceed-
ings of the First International Conference on Evolutionary Computation
and Its Applications (EvCA’96) (1996)

[12] Richards, F.C., Meyer, T.P., Packard, N.H.: Extracting cellular au-
tomaton rules directly from experimental data. Physica D: Nonlinear
Phenomena 45(1), 189–202 (1990)

[13] Rosin, P.L.: Image processing using 3-state cellular automata. Comput.
Vis. Image Underst. 114(7), 790–802 (2010)

[14] Sapin, E., Bull, L., Adamatzky, A.: Genetic approaches to search for
computing patterns in cellular automata. Comp. Intell. Mag. 4(3), 20–
28 (2009)

20 W. Bo lt, J. M. Baetens, B. De Baets

[15] Sapin, E., Bailleux, O., Chabrier, J.J.: Research of a cellular automaton
simulating logic gates by evolutionary algorithms. In: Proceedings of
the 6th European conference on Genetic programming. pp. 414–423.
EuroGP’03, Springer-Verlag, Berlin, Heidelberg (2003)

[16] Sun, X., Rosin, P.L., Martin, R.R.: Fast rule identification and neigh-
borhood selection for cellular automata. Trans. Sys. Man Cyber. Part
B 41(3), 749–760 (2011)

[17] Yang, Y., Billings, S.A.: Neighborhood detection and rule selection
from cellular automata patterns. Trans. Sys. Man Cyber. Part A 30(6),
840–847 (2000)

[18] Yang, Y., Billings, S.A.: Extracting boolean rules from ca patterns.
IEEE Transactions on Systems, Man, and Cybernetics, Part B 30(4),
573–580 (2000)

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 21

Analysis of discrete state space partitioned by the

attractors of the dynamic network formation game

model

Tetsuo IMAI1,2,† and Atsushi TANAKA2,‡

1RIKEN Advanced Institute for Computational Science, Japan
†tetsuo.imai@riken.jp

2Graduate School of Science and Engineering, Yamagata University,
Japan

‡tanaka@yamagata-u.ac.jp

Abstract

In recent years much attention are paid to complex network gen-
eration models. The dynamic network formation game model (the
dynamic NWFG model) was proposed by authors as the promising
candidate for generating complex networks. This is an approach for re-
vealing what network topologies tend to be generated by multiple self-
interest and distributed designers. Since the dynamic NWFG model
can be treated as one of the discrete dynamics systems, it is effective
to apply approaches for analyzing Boolean Networks as the method of
the analysis of the state space of the dynamic NWFG model. In this
article, it is shown that the analysis measures for characterizing the
behaviors of random Boolean networks can also be applied to analysis
of that of the dynamic NWFG model. In addition we investigate the
validity of the Monte Carlo method for estimating features of state
space structures of the dynamic NWFG model.

1 Introduction

The network formation game (NWFG) formulated by Jackson and Wolin-
sky [3] is a model of network formations by multiple agents based on the
framework of non-cooperative game in the field of game theory. This is a
promising approach for revealing what network topologies tend to be gener-
ated by multiple self-interest and distributed designers. With activation of
research of a complex network in recent years, much attention are paid to
this approach as a model of network formation. In the field of traditional
NWFG, most of known results about emergent networks have been limited

22 T. Imai, A. Tanaka

to analysis of the behaviors in the case of simple cost parameters or results
of small scale simulation. To reveal network topologies which are formed in
heterogeneous and large scale situations, more realistic models are required.
One promising approach against these limitations is the dynamic network
formation game model (the dynamic NWFG model) [1]. It can obtain so-
lutions of the previous (static) NWFG in the lesser computational ability,
and it can weight multiple solutions by the occurrence probability. How-
ever, structures of state spaces partitioned by many solutions have not been
revealed yet. Since this limitation reduces performance of the model for
predicting properties of emergent networks formed by many selfish and dis-
tributed agents, it is important to reveal these structures of the partitioned
state spaces.

Boolean Network (BN) has been analyzed through long term as one of
discrete dynamical systems, and it has yielded many results about the model
[6, 4]. The BN is the system which consists of the set of Boolean variables
which are determined in each discrete time step depending on other Boolean
variables of the system. The Random Boolean Network (RBN) which is also
called as the N-K model or the Kauffman Network, is a particular model of
the Boolean network. Triggered by the epoch-making work of Kauffman [5],
the properties of various realizations of RBNs have been investigated. At-
tracted properties of RBNs are, the number of attractors, the length of
attractor’s cycle, the size of basin of attractors, transient time (the number
of steps the system takes before it falls into an attractor), and properties
about stability against perturbations and mutations. Since the dynamic
NWFG model can be treated as one of the discrete dynamics systems, we
presume that it is effective to apply approaches for analyzing BNs as the
method of the analysis of the state space of the dynamic NWFG model.

The first contribution of the article is that it is shown that the analysis
measures for characterizing the behaviors of RBN can also be applied to
analysis of that of the dynamic NWFG model. The second is that features
of the partitioned state space of the dynamic NWFG model have revealed
by using approaches for the state space of BNs. It is shown by simulations
that a number of attractors with diverse basin size are observed in some
settings. The third is that the validity of the Monte Carlo method for
estimating features of state space structures of the dynamic NWFG model
is investigated.

2 Network Formation Game (NWFG)

2.1 Static Network Formation Game

The traditional NWFG was formulated by Jackson and Wolinsky [3]. In
this article, we refer to their model as the static network formation game to
contrast it with the dynamic variation described in the next subsection. It

Analysis of discrete state space partitioned by the attractors of the dynamic
network formation game model 23

is formulated as follows.

Let N be the set of players and n be the size of N respectively, and they
can form links among any pair of players. The topology (which is same as
graph in the graph theory) g is defined by a combination of the set of players
N and the set of links L ⊂ N×N . A link (i, j) is denoted as ij for simplicity.
In this article, we consider only undirected topologies. The strategy space
of player i is Si = 2N\{i}, where N \ {i} = {1, 2, . . . , i− 1, i+ 1, . . . , n} and
2N\{i} is the power set ofN\{i}. If s ∈ S1×· · ·×Sn is the profile of strategies
played, then link ij forms if and only if both j ∈ si and i ∈ sj . The outcome
network g(s) is represented by g(s) = {ij|i ∈ sj and j ∈ si}. Instead of
Nash equilibrium which is generally utilized as the concept of solution in the
game theory, Jackson and Wolinsky [3] proposed the novel stability concept
called pairwise stability which departs from the notion of Nash equilibrium
because of specialty of the NWFG. An topology g is pairwise stable if

ui(g) ≥ ui(g − ij), uj(g) ≥ uj(g − ij) (∀ij ∈ g)

and

ui(g + ij) > ui(g) ⇒ uj(g + ij) < uj(g) (∀ij /∈ g)

where ui(g) is the payoff for player i in topology g and g+ ij is the topology
which is added a link ij to topology g, g−ij is the topology which is removed
a link ij from topology g. There are two issues in the static NWFG. Firstly,
it is difficult to find pairwise stable topologies because the state space is
critically huge and efficient methods for finding pairwise stable topologies
have not been established yet. Secondly, there are many pairwise stable
topologies in general, and we can not identify important ones among these
topologies. In the case that the number of players is large, these problems
becomes to be especially serious.

2.2 Dynamic Network Formation Game model

The dynamic NWFG model is presented by authors as a deterministic ver-
sion of introducing dynamicity to the static NWFG [1]. They adopted the
concept defeat and improving path defined by Jackson and Watts, and mod-
ified their previous dynamic network formation model to that of behaving
deterministically by specifying the most payoff-improving transition among
possible transitions.

The model is formulated as a kind of processes of a time series of
simultaneous-move game as follows. At each discrete time step t, the game
in strategic form determined by the current state (same as topology) g(t) is
played and it determines the next state g(t+1). As for the game which played
at each time step,players are agents who intend to improve their payoffs. The
strategy of each agent i is indicated as a vector si(t) = (si1(t), . . . , sin(t)),
where sij(t) ∈ {0, 1}. The player i independently sets sij(t) according to

24 T. Imai, A. Tanaka

change of its payoff with change of link ij, sij(t) is set to 1 if it is desir-
able to add (or maintain) the link with player j, otherwise sij(t) is set to 0.
sii is always equal to 0. The payoff of the player i is defined by following
distance-based payoff function,

ui(g) =
∑

j 6=i

δdij −
∑

j∈{j|ij∈g}
cij (1)

where 0 ≤ δ ≤ 1 indicates the decay of benefit from connected agent with
increase of the distance, dij is the distance between agent i and j (the
number of hops from i to j), and cij is a link cost to add or maintain the
link between i and j. The outcome g(t + 1) obtained by playing the game
at time step t is determined as follows. We describe about two concepts
adjacent and defeat. Two topologies g and g′ are adjacent if the g′ differs
only one link from g,and a state g′ defeats an adjacent state g if either

g′ = g − ij and
(
ui(g

′) > ui(g) or uj(g
′) > uj(g)

)
(2)

or

g′ = g + ij and{(
ui(g

′) ≥ ui(g) and uj(g
′) ≥ uj(g)

)
, (3)

except
(
ui(g

′) = ui(g) and uj(g
′) = uj(g)

)}
.

The g(t + 1) is specified deterministically among states which can defeats
g(t) and g(t) itself. For more concrete description of g(t+1), two definitions
∆uij(t+ 1) and acceptable link set Lacceptable(g) are described as follows.
Firstly, ∆uij(t+ 1) is defined as the amount of change of i’s payoff in the
case that the change of link ij occurs at time step t,

∆uij(t+ 1) =
{
ui
(
g(t) + ij

)
− ui

(
g(t)

)
, if ij /∈ g(t)

ui
(
g(t)− ij

)
− ui

(
g(t)

)
, if ij ∈ g(t).

(4)

Secondly, Lacceptable(g) ⊂ L ⊂ N ×N is defined as the set of links which are
acceptable for both of player i and player j,

Lacceptable(g) = {ij|ij /∈ g and g + ij defeats g} (5)

∪ {ij|ij ∈ g and g − ij defeats g}.

The link ij which is changed at the game described as

ij = argmax
ij∈Lacceptable(g(t))

∆uij(t+ 1) (6)

Analysis of discrete state space partitioned by the attractors of the dynamic
network formation game model 25

and determines the outcome g(t+1), where argmax
x∈X

f(x) indicates the value

xmax ∈ X that maximize f(x). If no links satisfy this condition then g(t+1)
is exactly same as g(t), and if there is more than one link satisfying that,
the link which involved by the agent who have the youngest ID is prior than
others as a matter of convenience. Note that agents decide their strategies
at each time step t only to make their own payoffs of the next step t+ 1 be
better off without any forecasts. The process starts from the initial state of
topology g(0), and it continues until the state converge at a stable state or
a part of a cycle which is described as the attractor of the process.

It is clear from definitions that a state is pairwise stable if and only if the
attractor of the process is consisted of one state. It is the most important
property of the dynamic NWFG model. An attractor can be an attractor
cycle which is consisted by a sequence of adjacent states {g1, g2, . . . , gK} such
that each defeats the previous one and g1 = gK . It is called as improving
cycle at the context of the NWFG. Main reason of existence of attractor cycle
is that agents decide their strategies without any forecasts. The condition of
existence of attractor cycle is analyzed by Jackson and Watts [2]. In general,
orbits of dynamic systems in continuous space can take a chaotic orbit which
has infinite length of period. On the other hand, the dynamic NWFG model
converges to either attractive fixed states or attractor cycles. The reason is
that since the size of the whole state space is only finite, attractor cycles
can also have only finite lengths.

2.3 State space of the dynamic NWFG model

In this subsection the properties of the state space G of the dynamic NWFG
model are described. This is a deterministic and synchronized state transi-
tion model on discrete state and time spaces. Figure 1 shows an example of
the state transitions of the dynamic NWFG model.

The size of G is the number of capable states(topologies) constructed by

n agents, |G| = 2(
n
2), therefore by increasing the node size n, |G| increases

rapidly. Let the set of initial states converging to an attractor be a basin of
attraction, it is the general term of the dynamic systems, the state space is
partitioned into some mutually exclusive and collectively exhaustive basins
for each corresponding attractor in the model. Basins of attractions might
take greatly different sizes in the cases of some conditions of payoff func-
tions. It seems to be natural to consider the basin size of an attractor as the
importance of the attractor because the basin size of the attractor is pro-
portional to the probability of converging to the attractor in the assumption
that all of initial state g0 have the same probability.

At the last of the section, we refer the significance of applying the analysis
method of BNs to analysis for the dynamic NWFG model. Firstly we point
out the significance from a standpoint of the NWFG. The dynamic NWFG

26 T. Imai, A. Tanaka

Figure 1: An example of state transitions of the dynamic NWFG model [1].
Each of two adjacent states are linked by dashed lines. Respective values of
payoffs are listed in the nodes. There are arrows from a state g(t) to a state
g(t + 1) which have a relation that it stays at the state g(t) at time step
t and it move to the state g(t + 1) at next time step t + 1. These arrows
indicate the most payoff improving transition according to the equation (6).
There are 3 pairwise stable states of g3,g5 and g6, and no attractor cycles.
The sizes of each basins of attraction are respectively 2, 5 and 1.

model is clearly a kind of BNs, thus methodology of discrete dynamics for
analysis of RBNs is also hopeful for analysis of the dynamic NWFG model.
In addition, knowledge of BNs derived by the discrete dynamics methodology
might also be valid for the dynamic NWFG model. To be more precise,
measures for analyzing RBN dynamics, such as the number of attractors, the
size of basin of attraction, the length of cycles, transient times, etc. can also
be applied for analyzing the dynamic NWFG model. Secondly we denote the
significance of our contributions for the standpoint of RBN analysis. Each
state are represented by the bit sequence and by the undirected topology.
Thus the dynamic NWFG model (and topology transition models in general)
give an additional explanation to a state which has only been a bit sequence.
It might provide an additional properties of attracted states which are sets
of bit sequences.

3 Investigation of the partitioned state space

As described in the previous section, the decay parameter δ and cost param-
eters cij specifies the state space structure. The whole state space might be
partitioned into a large number of basin of attraction of multimodal size.
These basins of attraction are characterized by measures used by analysis
of RBNs, such as the number of basins, the size of basins of attraction,
the length of cycles, etc. In this section and the next section, we perform
the computer simulations for analyzing the properties of the state space

Analysis of discrete state space partitioned by the attractors of the dynamic
network formation game model 27

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04

 0 100 200 300 400 500 600 700 800

P
ro

ba
bi

lit
y

Number of Attractors

 0

 1

 2

 3

 4

 5

 6

 50 100 150 200 250 300 350 400 450 500

f- (
k)

Size of Basins

(a) δ = 0.9, R = 1.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

lit
y

Number of Attractors

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5000 10000 15000 20000 25000 30000

f- (
k)

Size of Basins

(b) δ = 0.9, R = 5.0

Figure 2: Results of the average numbers attractors and that of sizes of
basins of attraction for each parameters.

constructed by the dynamic NWFG model and for the estimation of the
structures. In this section, we investigate the properties of the partitioned
state space for each parameter set. Since the exhaustive search in the case of
the larger number of nodes becomes to be difficult, we adopt the number of
nodes 6 for the exhaustive search in the realistic time, although it is of course
very small. The number of states of the whole state space with n nodes is

2(
n
2), thus the size of that with 6 nodes is 2(

6
2) = 32768. The decay parame-

ter δ is set to 0.9 and the meta parameter R which cost parameters cij are
sampled randomly and uniformly in the interval (0, R] , is set to 1.0 and 5.0.
For each of all the combinations of these parameters, 100 random partition
patterns are generated. Although there are no strong meanings in the value
of these parameters, we believe that it will be meaningful as fundamental
investigation. By simulations with these settings, frequency distributions of
the following two measures the number of basins of attraction and the size
of basins of attraction are investigated. The number of basins of attraction
is equal to the number of attractions and to the number of cycles, and is
evaluated by the average values. The size of basins of attraction is measured
by investigating the average frequency distributions over 100 patterns. To
be more precise, the average frequency distributions are evaluated by the
value of f̄ which is the cumulative appearance times of size k divided by
the number of patterns. Figure 2 shows results of these measures for each
parameter. It is observed that the numbers of attractors can take various
values and distributions of the average number of attractors are similar to
an exponential function with a negative exponent. Frequencies of appear-
ance of micro size basins are increasing, in the case of R=5.0, a number
of micro size basins and an extremely huge size (=32768) basin are both

28 T. Imai, A. Tanaka

observed. In the case of R = 0.1, extremely micro size (=1) basins appear
very frequently. From these results in some cases depending on a parameter,
it likely consists that the perfect prediction of basin size is difficult because
of the diverse basin sizes.

4 Evaluation of the validity of the Monte Carlo
simulation

In this section, estimations of the properties of the structures by Monte Carlo
simulations are performed and the efficiency of the Monte Carlo simulations
is evaluated.

It is already known that the dynamic NWFG model can generate com-
plex networks. For more detailed evaluation of networks generated by the
model, it is necessary to perform simulations with 100 or more nodes and
to investigate the properties of the results’ topologies. However, the size
of the state space constituted by such large number of nodes is very huge,

because the size of state space is 2(
n
2) for the number of nodes n. Thus it is

not realistic to investigate the whole state space. Moreover, it seems to be
also difficult to describe the system’s behaviors by approximate methods.
Because processes like RBNs or the dynamics NWFG model which can be
modeled as state transitions on discrete space, may converge to a different
attractor with the greatly diverse properties by some perturbations.

An promising approach to tackle the problem is investigating the prop-
erties for many random samples. This is the estimation of the properties
of the whole state space instead of actual investigation of the whole state
space. This approach is called as the Monte Carlo method.

In this section, the Monte Carlo simulations are performed. In our sim-
ulation, the number of nodes is 6, thus the size of the whole state space is
32768. For two parameter sets of δ = 0.9, R = 1.0 and δ = 0.9, R = 5.0, 100
patterns of partitions are generated, and each property of state space is es-
timated by Monte Carlo simulations for 100 partition patterns. Simulations
are performed for each sampling rate 0.001, 0.01, 0.1, 0.2 and 0.5. For each
pattern and each sampling rate, Monte Carlo simulation is performed 1000
times. The effectiveness of estimation by Monte Carlo method is evaluated
by average values for 1000 trials and the true values obtained by the strict
simulation performed in the section 3. The purpose of the simulation is
to evaluate the efficiency of the Monte Carlo simulation for revealing the
properties of the state space constructed by the dynamic NWFG model. If
it becomes clear that the simulation of small samples can fully represent
the system-wide process, the property of the topologies formed by a large
number of nodes can be revealed by investigating only about small samples.
Instead, if the simulation of small samples cannot represent the process effi-
ciently, investigations about results of small samples which could change by

Analysis of discrete state space partitioned by the attractors of the dynamic
network formation game model 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

D
et

ec
tio

n
R

at
e

Sampling Rate

(a) δ = 0.9, R = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

D
et

ec
tio

n
R

at
e

Sampling Rate

(b) δ = 0.9, R = 5.0

Figure 3: Attractor detection rate by Monte Carlo Simulations for each
sampling rate.

some perturbations might not be significant.
Figure 3 shows results of Monte Carlo simulations. It shows the value of

(Number of actually detected attractors)/(Total number of attractors). In
these figures, average values of each patterns are pointed by x-mark, and
standard deviations are indicated by error bars. From these results, in the
case that there are large number of attractors with very various sizes (shown
by (a)), by Monte Carlo simulations of sampling rate only over 0.1 all of
attractors can be detected certainly. It implies that features of attractors
of the dynamic NWFG model might not be revealed by a small number of
sampling because of the hugeness and diversity of the state space. On the
other hand, in the case that diversity of the state space is not so serious
(shown by (b)), a small number of Monte Carlo simulations are efficient
enough.

In summary, although our investigation is very small scale simulation,
it is shown that Monte Carlo simulations of a small number of sampling
might not be efficient enough for investigating the features of attractors of
the dynamic NWFG model. However, it seems that there is only a method
of Monte Carlo simulations of a small number sampling in order to reveal
features of the network formation by the dynamic NWFG model with large
scale nodes. To tackle the problem, an idea might be efficient that by trac-
ing orbits of a small number of samples and investigating the diversity of
attractors to whom these orbits converge, it might be able to estimate the
diversity of the size of basin of attraction. It might be able to evaluate the
universality of the data obtained by sampled data. It seems to be hopeful
because the diversity of partition of the state space and the rate of attractor
detection have a positive correlation.

5 Conclusion

In this article, it is shown that the analysis measures for characterizing
the behaviors of RBN can also be applied to the analysis of that of the
dynamic NWFG model. In addition, features of the partitioned state space
of the dynamic NWFG model are revealed by using approaches for the state

30 T. Imai, A. Tanaka

space of BNs. It has been shown by simulations that the diverse number
of attractors with diverse basin size are observed in some settings. Thirdly
we have investigated the validity of the Monte Carlo method for estimating
features of state space structures of the dynamic NWFG model. It has been
shown that in the case that there are large number of attractors with very
various sizes, by Monte Carlo simulations of sampling rate only over 0.1 all
of attractors can be detected certainly. It implies that features of attractors
of the dynamic NWFG model might not be revealed by a small number of
sampling because of the hugeness and diversity of the state space. On the
other hand, it has also been shown that in the case that the diversity of the
state space is not so serious, a small number of Monte Carlo simulations are
efficient enough.

Issues in the future are as follows. The approach used for the analysis of
the state space of RBN has been only used for analyzing the state space of
the dynamic NWFG model. It might be important to classify the dynamic
NWFG model more precisely as a kind of BN.

Acknowledgement

The computation in this work has been done using the facilities of the Insti-
tute of Statistical Mathematics in Japan. This research is partly supported
by Grant-in-Aid for Scientific Research (C) (25330361).

References

[1] T. IMAI and A. TANAKA. A game theoretic model for as topology for-
mation with the scale-free property. IEICE Transactions on Information
and Systems, E93.D(11):3051–3058, 2010.

[2] M. O. Jackson and A. Watts. The evolution of social and economic
networks. Journal of Economic Theory, 106(2):265–295, October 2002.

[3] M. O. Jackson and A. Wolinsky. A strategic model of social and economic
networks. Journal of Economic Theory, 71(1):44–74, October 1996.

[4] L. Kadanoff, S. Coppersmith, and M. Aldana. Boolean dynamics with
random couplings. eprint arXiv:nlin/0204062, Apr. 2002.

[5] S. Kauffman. The Origins of Order: Self Organization and Selection in
Evolution. Oxford University Press, Incorporated, 1993.

[6] J. Schiff. Cellular Automata: A Discrete View of the World. Wiley Series
in Discrete Mathematics & Optimization. Wiley, 2008.

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 31

Surjective Two-Neighbor Cellular Automata on

Prime Alphabets∗

Jarkko Kari1 Ville Salo1,2 Ilkka Törmä1,2

1University of Turku, Finland

2TUCS – Turku Center for Computer Science
{jkari,vosalo,iatorm}@utu.fi

Abstract

In this article, we present a simple proof for the fact that a surjec-
tive cellular automaton with neighborhood size 2 on a prime alphabet
is permutive in some coordinate. We discuss the optimality of this
result, and the existence of non-closing cellular automata of a given
neighborhood and alphabet size.

1 Introduction

Cellular automata are topological dynamical systems that have a simple fi-
nite definition, and are discrete in both space and time. Formally, they are
continuous self-maps of the space of infinite sequences over a finite alphabet.
The dymamics of cellular automata can be very complex and unpredictable,
and many fundamental questions about their properties are still open. In
particular, the dynamics of surjective cellular automata have been exten-
sively studied, but it is still unknown whether they always have a dense set
of periodic points.

In this work-in-progress article, we study surjective cellular automata
with small local neighborhoods. In particular, we show that if the neigh-
borhood size is 2 and the size of the alphabet is a prime, the automaton
is permutive in one of the coordinates. We try to optimize this result as
much as possible, using computer searches and general constructions, and
obtain an almost complete characterization of those alphabet-neighborhood
size pairs which admit a non-closing cellular automaton.

∗Research supported by the Academy of Finland Grant 131558

32 J. Kari, V. Salo, I. Törmä

2 Definitions and Preliminaries

Let S be a finite set, called the alphabet, and denote by S∗ the set of finite
words over S. We endow SZ with the product topology, making it a compact
topological space. An element x = (xi)i∈Z ∈ SZ is called a configuration.
For i, j ∈ Z, we denote x[i,j] = xixi+1 · · ·xj . The shift map σ : SZ → SZ,

defined by σ(x)i = xi+1, is a homeomorphism from SZ to itself. A one-
directional sequence x ∈ SN (or x ∈ S−N) is transitive if every word in S∗

occurs in it, and a configuration x ∈ SZ is doubly transitive if both x(−∞,0]

and x[0∞) are transitive.

A cellular automaton (CA for short) is a continuous function f : SZ →
SZ that commutes with the shift: f ◦ σ = σ ◦ f . It is known [2] that a
cellular automaton is given by a local rule F : Sℓ+r+1 → S for some ℓ, r ∈ N
by f(x)i = F (x[i−ℓ,i+r]). The numbers ℓ and r are called left and right radii
of f , respectively. If we can take ℓ = 0 and r = 1, we say f is a radius-
1
2 CA. We say f is permutive in a coordinate i ∈ [−ℓ, r], if fixing a word
w ∈ Sℓ+r+1 and permuting the letter wi also permutes the image F (w). If f
is permutive in the leftmost (rightmost) coordinate of its neighborhood, we
say it is left (right, respectively) permutive. We say f is left (right) closing,
if x[0,∞) = y[0,∞) (x(∞,0] = y(∞,0], respectively) and f(x) = f(y) implies

x = y for all x, y ∈ SZ. Finally, f is preinjective if f(x) = f(y) and x 6= y
imply that xi 6= yi for infinitely many i ∈ Z.

The image graph of a CA f : SZ → SZ with radii ℓ and r is the labeled
graph with vertex set Sℓ+r, and an edge from v to w with label s ∈ S if and
only if v[1,ℓ+r−1] = w[0,ℓ+r−2] and f(v0w) = s. The determinization of said
graph is given by the standard subset construction. Note that f is surjective
iff every u ∈ S∗ occurs as the label of a path in the image graph of f .

The following result is classical, and can be found, for example, in [2] or
[4].

Lemma 1. Let f : SZ → SZ be a surjective CA with left and right radii ℓ and
r, respectively. Then |f−1(x)| is finite and bounded, and f is preinjective. If
x ∈ SZ is doubly transitive and a 6= b ∈ f−1(x), then a and b are also doubly
transitive and a[i,i+ℓ+r−1] 6= b[i,i+ℓ+r−1] for all i ∈ Z. Moreover, there exists

M(f) ∈ N such that |f−1(x)| = M(f) for every doubly transitive x ∈ SZ.

3 Permutivity of Radius-12 Automata

For this section, we fix a surjective CA f : SZ → SZ with left and right radii
ℓ and r, and denote |S| = n. When x ∈ SN, we write

f−1(x) = {y ∈ SN | ∀i ∈ N : f(∞0.y)ℓ+i = xi},
and symmetrically for y ∈ S−N. When x ∈ SN (y ∈ S−N) is transitive,
we write L(f, x) = |f−1(x)| (R(f, y) = |f−1(y)|, respectively). Denote also

Surjective Two-Neighbor Cellular Automata on Prime Alphabets 33

M = M(f).
The following results (up to but not including Proposition 1) seem clas-

sical, but we have not been able to find a reference where they are presented
in this form. Closely related results can be found in sections 14 and 15 of
[2]. To our knowledge, Proposition 1 is a new result.

Lemma 2. Both L and R are functions of f , ℓ and r only, and do not
depend on the chosen transitive points. Writing L(f) and R(f) for these
functions, we have Mnℓ+r = L(f)R(f).

Proof. Let x ∈ S−N and y ∈ SN be transitive, and consider the set of
points A = xSℓ+ry. We have |A| = nℓ+r, and since every element of A is
doubly transitive, |f−1(A)| = Mnℓ+r. On the other hand, clearly |f−1(A)| =
R(f, x)L(f, y). In particular, L and R are functions of f , ℓ and r only.

Lemma 3. Writing L(f) and R(f) as before, the functions f 7→ M(f),

f 7→ L′(f) = L(f)
nℓ and f 7→ R′(f) = R(f)

nr are homomorphisms from the set
of surjective CA on S to Q (and do not depend on the choice of ℓ and r),
and M = L′R′.

Proof. It is clear that L′ and R′ do not depend on the choice of ℓ and r,
as increasing ℓ effectively multiplies L by n, and similarly for r and R. We
then prove that L′ is a homomorphism, the case of R′ being symmetric. Let
g : SZ → SZ be a surjective CA with left radius ℓ′. Let x ∈ SN be transitive,
so that g−1(x) is also transitive. Taking the left radius ℓ + ℓ′ for f ◦ g, we
then have L(f ◦ g) = |f−1(g−1(x))| = L(f)L(g). It follows that L′ is a
homomorphism, since it does not depend on the choice of the radii.

From now on, denote R = R(f) and L = L(f), since f and its radii are
fixed.

Lemma 4. The inequalities M ≤ L,R ≤ nℓ+r hold.

Proof. Let x ∈ SZ be a configuration, and denote |f−1(x)| = k. Then there
exists i ∈ Z such that already |f−1(x[i,∞))| ≥ k. The inequalitiesM ≤ L and

M ≤ R follow. The upper bounds follow from the equality Mnℓ+r = LR of
Lemma 2.

Lemma 5. Let x ∈ SN be transitive. If a 6= b ∈ f−1(x), then a and b differ
in their (r + ℓ)-prefix.

Proof. Suppose not, let y ∈ S−N be transitive and c ∈ f−1(y). Then
f(c.a) = f(c.b) is doubly transitive, but has two distinct preimages that
agree on the interval [0, ℓ+ r − 1], a contradiction by Lemma 1.

By the above lemma, the numbers L and R are generalizations of the
left and right Welch indices of reversible cellular automata, respectively, as
defined in [1] (among others).

34 J. Kari, V. Salo, I. Törmä

Proposition 1. If n = |S| is prime and f is a surjective radius-12 CA, then
f is left or right permutive.

Proof. Because LR = Mn, n is prime and L,R ≤ n, we must have either
L = n or R = n. Without loss of generality we assume the former. Now, if
x ∈ SN is transitive and s ∈ S, every s′ ∈ S occurs as the leftmost symbol
of a preimage of sx by Lemma 5. This means that for all s, s′ ∈ S, there
exists s′′ ∈ S such that f(s′, s′′) = s, and thus f is right permutive.

This proposition can be useful when trying to construct surjective cel-
lular automata with some specific nontrivial properties, as it shows that
radius-12 CA on prime alphabets are quite simple, and thus trivially possess
or lack many interesting properties.

4 Other Neighborhoods and Alphabet Sizes

In this section, we study the case of non-prime alphabets and larger neigh-
borhoods in the hope of generalizing Proposition 1. We proceed in the
following two directions:

1. We study whether complicated surjective CA could somehow be ‘de-
composed’ into more primitive components, preferably permutive CA.

2. With the help of computer searches, we try to enumerate the combina-
tions of alphabet and neighborhood sizes in which all cellular automata
must be permutive or closing in either direction.

In the first direction, we begin with the following definition.

Definition 1. Let n = k1k2, where ki ≥ 2. We say f is track-reducible
if there exist two sets S1 and S2 with |Si| = ki, cellular automata g on S1

and h on S1 × S2 with g ◦ π1 = π1 ◦ h, and bijections α : S → S1 × S2 and
β : S1 ×S2 → S such that f = β ◦h ◦α, where α and β are used as radius-0
cellular automata.

Surjective track-reducible automata are easy to construct inductively as
follows. First, let g be any surjective (perhaps track-reducible) CA in S1.
Then we can define h by choosing a coordinate i ∈ Z on the S2-track and
a neighborhood N ⊂ Z on the S1-track, and for each w ∈ SN

1 , a CA hw on
S2 that is left (or right) permutive in the coordinate i. Such a CA is always
surjective, but if the direction of permutivity or the coordinate i is varied, it
is not permutive. In the course of this section, however, we shall see that not
all surjective cellular automata on non-prime alphabets are track-reducible.

For the second direction, we begin with the radius-12 case, and show that
here Proposition 1 is optimal.

Surjective Two-Neighbor Cellular Automata on Prime Alphabets 35

Proposition 2. Let S be an alphabet. Then all surjective radius-12 CA on
S are closing in either direction iff |S| is prime.

Proof. First, if |S| is prime, then by Proposition 1, every radius-12 CA on S
is permutive in either coordinate, thus closing.

Next, let n ≥ 3 be arbitrary. We construct a left permutive radius-12 CA
fn on {0, . . . , n − 1} which is not right closing. The local rules for fn are
fn(a, b) = a+ b mod 2 and fn(c, b) = c for all a ∈ {0, 1}, b ∈ {0, . . . , n− 1}
and c ∈ {2, . . . , n − 1}. Now fn is left permutive, but the point ∞2.0∞

has preimages ∞2.0∞ and ∞2.1∞, so fn is not right closing. Define also
gn(a, b) = fn(b, a), so that gn is right permutive and not left closing.

Suppose |S| = k1k2, where ki ≥ 3. The cellular automaton fk1 × gk2
on {0, . . . , k1 − 1} × {0, . . . , k2 − 1} is surjective, but not closing in either
direction. Interpreting the state set as S, the claim follows for such S.

Finally, let |S| = 2n for n ∈ N, and assume S = {0, . . . , 2n − 1}. We
construct a surjective radius-12 CA f on S which is not closing. First, define
A = {1, 3, . . . , 2n − 3} and B = {2, 4, . . . , 2n − 2}, so that A, B, {0} and
{2n− 1} form a partition of S. Define then f by

(a, b) (s, s) (k − 1, o) (o, o+ 2k)
f(a, b) 0 k ∈ A

(a, b) (k − 1, e) (e, e+ k) (2n− 2, o) (2n− 1, e)

f(a, b) k ∈ B 2n− 1

where s ∈ S, o ∈ A ∪ {2n− 1} and e ∈ {0} ∪B are arbitrary, and the sums
are taken modulo 2n. This is a generalization of the automaton defined in
[3, Example 15].

The determinization of the image graph of f is

S

odd even

0, 2n− 1

A B

0, B
A, 2n− 1

0, A
B, 2n− 1

and it shows that f is surjective. However, the point ∞0.1∞ has the three
preimages ∞0.135 · · · , ∞0.357 · · · and ∞1.357 · · · which show that f is nei-
ther right nor left closing.

A simple computer search also shows that the automaton f constructed
in the case |S| = 4 (the original example of [3]) is not track-reducible. Thus
track-reducibility is not general enough to capture all radius-12 surjective
cellular automata on composite alphabets.

For larger neighborhood sizes, we have the following.

36 J. Kari, V. Salo, I. Törmä

Example 1 (A non-closing surjective radius-1 CA with alphabet size at
least 5). Let n ≥ 3 and S = {(0, 0), (0, 1), (1, 0), (1, 1)} ∪ {(i, i) | 2 ≤ i < n},
and let f be the three-neighbor CA that simulates the automaton fn (from
the proof of Proposition 2) on the first track using the cells 0 and 1, and gn
on the second track using the cells −1 and 0. Then f is clearly surjective,
but not closing in either direction.

We show a three-state three-neighbor CA which is surjective, but not
closing in either direction. This automaton was found by a computer search.

Example 2 (A non-closing surjective radius-1 CA with alphabet size 3).
Consider the CA whose local rule is given by

00 01 02 10 11 12 20 21 22

0 0 1 0 2 2 1 1 0 1
1 0 1 2 2 2 0 1 0 1
2 1 0 2 2 2 2 0 1 0

It is surjective, since its determinized image graph contains the subgraph

02
10
11

00
12
21

00
02
21

01
20
22

10
11
12

0

1

2

0

1

20
1

2

0

1

2

0

1
2

Consider the points ∞0.1∞ and ∞012.110∞. The former has the preimages
∞0.(2001)∞ and ∞0.(0120)∞, while the latter has ∞020.20∞ and ∞21.20∞.
This shows that the CA is neither left nor right closing.

Finally, we show the existence of a binary CA which is not closing in
either direction. The construction is almost surely not optimal with respect
to neighborhood size.

Example 3 (A non-closing surjective binary CA with neighborhood size
11). Consider the CA f on {0, 1} with neighborhood {−5, . . . , 5} defined
by the rules f(ab001cd001e) = c + e and f(a001bc001de) = a + c for all
a, b, c, d, e ∈ {0, 1}, and f(w) = w5 for all other w ∈ {0, 1}11. It is easy
to check that given a configuration x ∈ {0, 1}Z, we have x[0,2] = 001 iff
f(x)[0,2] = 001.

Consider a maximal subword w of the form a1b1001a2b2001 · · · 001anbn.
A preimage for w is a′1b

′
1001a

′
2b

′
2001 · · · 001a′n−1b

′
n−1001a

′
nb

′
n, where a′i, b

′
1 ∈

Surjective Two-Neighbor Cellular Automata on Prime Alphabets 37

Table 1: A table of closingness. The letter n denotes the size of the state
set, while m is the size of the neighborhood. The label ‘per’ refers to left or
right permutivity, ‘clo’ to left or right closingness, ‘?’ to unknown and ‘-’ to
not necessarily closing. On each row, the leftmost ‘-’ has been replaced by
the number of the result that proves this fact.

n \m 2 3 4 5 . . . 10 11

2 per per clo ? . . . ? Ex. 3

3 per Ex. 2 - - . . . - -

4 Prop. 2 - - - . . . - -

5 per Ex. 1 - - . . . - -

6 Prop. 2 - - - . . . - -

7 per Ex. 1 - - . . . - -

8 Prop. 2 - - - . . . - -

9 Prop. 2 - - - . . . - -

{0, 1} are given by a′1 = a1, b
′
1 = b1, a

′
n = an, b

′
n = bn, and a′i = a′i+1 +

ai mod 2 and b′i = b′i−1 + bi mod 2 for all i ∈ [2, n − 1]. The preimages
of other patterns are given by themselves, since cells can only change their
state when surrounded by the 001-patterns in the specific way. Thus f is
surjective. Also, f simulates the n = 3 automaton from Example 1 via the
substitution (a, b) 7→ 001ab for a, b ∈ {0, 1} and (2, 2) 7→ 001000001, and it
is then easy to see that it is not closing in either direction.

Using a computer search, we have verified that all binary surjective CA
with neighborhood size 4 are right or left closing. Also, all surjective ele-
mentary CA are left or right permutive (with the minimal neighborhood).
The following cases are thus left open:

Question 1. For 5 ≤ m ≤ 10, does there exist a surjective binary CA of
neighborhood size m which is not closing in either direction?

References

[1] Eugen Czeizler and Jarkko Kari. A tight linear bound on the neigh-
borhood of inverse cellular automata. In Automata, languages and pro-
gramming, volume 3580 of Lecture Notes in Comput. Sci., pages 410–420.
Springer, Berlin, 2005.

[2] Gustav A. Hedlund. Endomorphisms and automorphisms of the shift
dynamical system. Math. Systems Theory, 3:320–375, 1969.

38 J. Kari, V. Salo, I. Törmä

[3] Petr Kurka. Topological dynamics of cellular automata. In Robert A.
Meyers, editor, Encyclopedia of Complexity and Systems Science, pages
9246–9268. Springer, 2009.

[4] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics
and coding. Cambridge University Press, Cambridge, 1995.

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop onCellular Automata and Discrete Complex Systems 2013 39

Two transitive cellular automata and their strictly
temporally periodic points∗

Jarkko Kari1, Kuize Zhang2,1

1. Department of Mathematics and Statistics, University ofTurku, FI-20014, Finland

jkari@utu.fi

2. College of Automation, Harbin Engineering University, Harbin, 150001, PR China

zkz0017@163.com

Abstract

In this paper, we give two one-dimensional, reversible and mixing cel-
lular automata whose sets of strictly temporally periodic (STP) points are
(i) neither dense nor empty, and (ii) dense, respectively. The first example
answers two questions proposed in AUTOMATA 2012: there are surjective
cellular automata whose STP points are neither dense nor empty, and there
are Devaney-chaotic cellular automata with STP points.

Keywords: cellular automaton, symbolic dynamics, spatially and tem-
porally periodic configuration, Devaney-chaos

1 Introduction

A cellular automaton (CA) is a discrete dynamical system studied in computability
theory, mathematics, physics, complexity science, theoretical biology, cryptology
and microstructure modeling. The property of global functions, limit behavior,
classification, topological structure, computational universality, reversibility and
conservation law, etc, are important research issues [1].

In [2, 3], the sets of strictly temporally periodic (STP) points (configurations) in
surjective CAs were studied. A configuration is called strictly temporally periodic
if it is periodic in time but not periodic in space. It was proved in [2] that the
set of STP points is residual for an equicontinuous surjective CA, dense for an
almost equicontinuous surjective CA, and empty for a positively expansive CA,
respectively. It was also shown that in the class of additive surjective CAs, the
set of STP points can be either dense or empty, the latter happens if and onlyif
the CA is topologically transitive. That is to say, for surjective CAs belonging
to a certain class, the size of the set of STP points is inversely related to be the
dynamical complexity of the class. Then a question was asked whether thereexists

∗Research supported by the Academy of Finland Grant 131558

40 J. Kari, K. Zhang

a surjective CA whose set of STP points is neither empty nor dense. It wasalso
asked whether one can restate the Devaney-chaos in terms of STP points,that is,
whether chaotic CAs are precisely those surjective CAs that have no STPpoints.
The investigation was continued in [3] where it was proved that the set of STP
points has strictly positive measure if and only if the CA is equicontinuous.

In this paper, we answer questions asked in [2] by providing two one-dimensional
(1-D), reversible and Devaney-chaotic CAs whose sets of STP points are (i) neither
dense nor empty, and (ii) dense, respectively.

2 Notations

We only consider 1-D CAs. A 1-D CA is a discrete-time dynamical system defined
as

A = (Z, S,N, fA), (1)

whereZ denotes the set of integers (cells);S is a finite set that has at least two
elements, called the state set;N = (n1, . . . , nm) is a nonempty finite ordered
subset ofZ consisting ofm distinct integers, called the neighborhood;fA : Sm →
S is a mapping, called the local rule. A configuration is a mappingc : Z → S. Let
SZ denote the set of all configurations overS. Fori < j we denote byc[i . . . j] the
word c(i)c(i+ 1) . . . c(j) ∈ Sj−i+1.

The functionFA : SZ → SZ defined by

FA(c)(i) = fA(c(i+ n1), . . . , c(i+ nm)) for all i ∈ Z (2)

is called the global function of CAA. Any initial configuration evolves under
iterations of the global function (2).

A metricd onSZ is defined forx, y ∈ SZ by

d(x, y) =

{
2−min{|i||x(i) 6=y(i)}, if x 6= y,
0, if x = y.

(3)

The metric defines a topology onSZ that is compact, totally disconnected and
perfect. Any wordw ∈ S+ = ∪∞

i=1S
i andn ∈ Z defines the cylinder

[w]n = {c ∈ SZ|c[n . . . n+ |w| − 1] = w}

of all configurations with wordw starting in positionn. The cylinders are open
and closed (clopen), and are well known to form a basis of the topology.

A translationτi : SZ → SZ is a function defined by an integeri: for any
configurationc ∈ SZ, for any integerj ∈ Z,

τi(c)(j) = c(j + i).

τ1 := σ is called shift. Translationτi is non-trivial if i 6= 0.

Two transitive cellular automata and their strictly temporally periodic points 41

It is well known that a functionG : SZ → SZ is a global function of a CA (a
CA function) if and only ifG is continuous and commutes with the shift [4]. A
CA A is said to be injective (surjective), ifFA is injective (surjective, respectively).
Every injective CA is automatically surjective and the inverse functionF−1

A is also
a CA function. For this reason injective CAs are also called reversible.

Let q ∈ S. A configurationc is said to beq-finite (q-uniform), if only a finite
number of cells are not in stateq (if each cell is in stateq, respectively). A config-
urationc is said to be spatially periodic ifτ(c) = c for some non-trivial translation
τ . The set of spatially periodic configurations is dense inSZ. For a CAA, a config-
urationc is said to be temporally periodic, ifc = F p

A(c) for some positive integer
p. For every reversible CA, each spatially periodic configuration is temporallype-
riodic. Then the set of temporally periodic configurations of every reversible CA is
dense inSZ. A configurationc is said to be strictly temporally periodic (STP) for
CA A, if it is temporally periodic for CAA but not spatially periodic.

A CA A is (topologically) transitive if for any nonempty open subsetsU and
V of SZ, there exists a nonnegative integerp such thatF p

A(U) ∩ V 6= ∅. A CA A
is called (topologically) mixing if for any nonempty open subsetsU andV of SZ,
there exists a nonnegative integerp such thatF q

A(U)∩V 6= ∅ for all q ≥ p. By the
definitions, mixing CAs are transitive. As cylinders are a basis of the topology, the
transitivity of CAA can be equivalently defined using words: A CA is transitive
if and only if for all l ≥ 1 and for all wordsu, v ∈ Sl, there exists configuration
c ∈ [u]0 such thatF p

A(c) ∈ [v]0 for some nonnegative integerp. The property of
being mixing can be characterized analogously using words.

A CA A is said to be sensitive to initial conditions if there exists a positive
numberǫ such that for any configurationc and for any positive numberδ, there
exist y ∈ Bδ(x) and a positive integerp such thatd(F p

A(y), F
p
A(x)) > ǫ. Every

transitive CA is known to be sensitive [5]. A CA A is said to be chaotic in the sense
of Devaney (Devaney-chaotic) [6] if

(i) it is transitive,

(ii) the set of temporally periodic configurations is dense inSZ, and

(iii) it is sensitive to initial conditions.

For general discrete dynamical systems, (i) and (ii) imply (iii) [7]. For cellular au-
tomata, (i) implies (iii) [5]. For reversible CAs, (ii) always holds so a reversible CA
is Devaney-chaotic if and only if it is transitive. It is a well-known open problem
whether (ii) holds for all surjective CA, or even whether (i) implies (ii).

42 J. Kari, K. Zhang

3 Our examples

3.1 A 1-D mixing, reversible CA whose set of STP points is neither
empty nor dense

Consider first the 1-D CAA = (Z, S,N, fA) whereS consists of the5 states
shown in Fig.1, N = (−1, 0, 1), and the local rule is defined as follows: for any
configurationc ∈ SZ, and for any celli ∈ Z,

• FA(c)(i) is in stateWALL if and only if c(i) is in stateWALL ,

• FA(c)(i) has a left arrow if and only ifc(i) has a right arrow andc(i+ 1) is
in stateWALL , or c(i) is not in stateWALL andc(i+ 1) has a left arrow,

• FA(c)(i) has a right arrow if and only ifc(i) has a left arrow andc(i− 1) is
in stateWALL , or c(i) is not in stateWALL andc(i− 1) has a right arrow.

Figure 1: The states of the CAFA in Section3.1, where the first state is called
BLANK , and the second state is calledWALL . The last two states contain a right
arrow, and the third and the last states contain a left arrow.

The rule is very simple: aWALL remains stationary and is a 1-blocking word.
Arrows are signals that bounce from the walls. From the local rule, one easily sees
that in any space-time diagram the arrows can move backward uniquely as time
decreases. That is, this CA is reversible. Since anr-blocking word exists, where
r = 1 is the neighborhood radius of the CA, the CA is not sensitive, so it is almost
equicontinuous [8].

Denote the shift CA with state setS by σ. Next we prove that CAFA ◦σ := F
is a mixing and reversible CA whose set of STP configurations is neither emptynor
dense inSZ. In F the stationary walls have become left moving signals, while the
right (left) arrows are stationary signals (signals of speed 2 to the left, respectively).
See Fig.2 for an example of a space-time diagram.

First, the CAF is easily seen to be mixing. In fact, the composition of any
surjective, almost equicontinuous CA with a non-trivial translation is mixing (The-
orem 2 in [9]).

Next we observe that the set of STP configurations of CAF is not empty.
Indeed, any configuration containing onlyBLANK states and right arrows (which
are stationary signals inF) is a fixed point ofF . There are uncountably many
choices of such configurations that are not spatially periodic.

Finally we show that the set of STP configurations are not dense by proving
that any temporally periodic configuration that contains a cell in stateWALL is
spatially periodic. Consider configuratione ∈ SZ that contains aWALL such that

Two transitive cellular automata and their strictly temporally periodic points 43

Figure 2: The top five squares are the states of the CAF in Section3.1. Note that
these states are essentially the same as those in Fig.1, respectively. The bottom
grid shows a subblock of a space-time diagram of the CAF in Section3.1. The
first line denotes the initial configuration, where all cells except for the middle ten
are in stateBLANK . The dotted segments are not part of the states, but are included
to indicate how the left arrows become signals of speed2 to the left.

F t(e) = e for somet > 0. We might as well assume thate(0) is in stateWALL

. The WALL moves left with speed one so, due to temporal periodt, we have
e(tk) = WALL for all k ∈ Z. Now consider the non-shifted original CAA: let
us show thate is temporally periodic forFA also. For all integersk, the arrows in
e[tk+1 . . . tk+ t−1] will always stay inside the segment[tk+1, tk+2, . . . , tk+
t − 1] bordered by statesWALL when configuratione evolves according toFA.
Hence their pattern repeats periodically: for eachk there exists1 ≤ s ≤ 5t−1

such thatF js
A (e)[tk + 1 . . . tk + t − 1] = e[tk + 1 . . . tk + t − 1] for all j ∈ Z.

DenoteT = (5t−1)!. For all integersk we haveF T
A (e)[tk + 1 . . . tk + t − 1] =

e[tk + 1 . . . tk + t− 1], that is,F T
A (e) = e.

We have shown thate is temporally periodic forF = FA ◦σ andFA. It follows
thate is spatially periodic:

e = F tT (e) = σtT (F tT
A (e)) = σtT (e).

3.2 A 1-D mixing, reversible CA whose set of STP points is dense

The example above shows that there is a chaotic CA whose set of STP pointsis not
empty. One could still wonder whether Devaney-chaotic CAs would alwayshave
non-dense sets of STP points. The example of this section shows that this is not
the case.

Figure 3: The states of the CA in Section3.2, where the first state is calledBLANK

. The arrows are colored red and green.

Consider CAA = (Z, S,N, fA) whereS consists of the9 states shown in
Fig. 3, N = (−1, 0, 1), and the local rule is defined as follows: in the space-time

44 J. Kari, K. Zhang

diagram, each corner is exactly one of the9 figures shown in Fig.4. In other
words, there are left and right moving signals, colored red and green,that bounce
upon collisions.

Figure 4: The local rule of the CA in Section3.2.

From the local rule, one easily sees that in any space-time diagram the arrows
can move backward uniquely as time decreases. Hence this CA is reversible. One
easily sees the following properties hold for anyBLANK -finite configurationc:

1. the order of the colors of the arrows remains the same at all times (but the
directions may change),

2. the number of left (right) arrows remains unchanged over time,

3. for all positive integersm holds: for all sufficiently large positive integers
p we haveF p

A(c)(i) is in stateBLANK for all |i| ≤ m, F p
A(c)(i) is either in

stateBLANK or only contains a left arrow for alli < −m, F p
A(c)(i) is either

in stateBLANK or only contains a right arrow for alli > m (see Fig.5.),

4. for all positive integersm holds: for all sufficiently large positive integers
p we haveF−p

A (c)(i) is in stateBLANK for all |i| ≤ m, F−p
A (c)(i) is either

in stateBLANK or only contains a right arrow for alli < −m, F−p
A (c)(i) is

either in stateBLANK or only contains a left arrow for alli > m.

Figure 5: A subblock of a space-time diagram of the CA in Section3.2. The first
line denotes the initial configuration, where all cells except for the middle fiveare
in stateBLANK . After a finite time, all left arrows are on the left of all the right
arrows.

Next we prove that the CAA is mixing, and hence Devaney-chaotic. Choose
arbitrarily two wordsu1, u2 ∈ Sl, where l ≥ 1. Denote the numbers of left
arrows, right arrows ofu1, the numbers of left arrows, right arrows ofu2 by
l1, r1, l2, r2, respectively. Letw2 = s1s2 . . . sm ∈ {RED , GREEN}m be the se-
quence of colors of the arrows inu2 from left to right, wherem = l2 + r2, and let
w1 ∈ {RED , GREEN}l1+r1 be the analogous sequence of colors inu1.

Two transitive cellular automata and their strictly temporally periodic points 45

Construct first the configurationc1 ∈ SZ such thatc1[0 . . . l − 1] = u1, and
c1[−(l1+ l2) · · ·−1] is a sequence ofl1+ l2 right arrows (of any colors). Allc1(i)
for i outside of interval[−(l1 + l2), . . . , l− 1] are in stateBLANK . Next construct
the configurationc2 ∈ SZ such thatc2[0 . . . l − 1] = u2, and for all i < 0 or
i > l− 1, c2(i) is in stateBLANK . By properties3 and4 above, for all sufficiently
large positive integersp all F p

A(c1)(i) are in stateBLANK for i ∈ [0, . . . , l − 1],
and allF−p

A (c2)(i) are in stateBLANK for i ∈ [−(l1 + l2), . . . , l − 1]. Consider
arbitrary suchp, and note that for alli ∈ Z eitherc1(i) or F−p

A (c2)(i) is BLANK .
Mergec1 andF−p

A (c2) into a single configurationc ∈ SZ as follows:

c(i) =

{
c1(i), if i ∈ [−(l1 + l2), . . . , l − 1],

F−p
A (c2)(i), otherwise.

Ignoring the colors of the arrows, we have thatc andF p
A(c) have in domain[0, . . . , l−

1] the patterns of arrows ofu1 andu2, respectively.
On the left of cell0, c has exactlyl1 + l2 + r2 right arrows and no left arrows.

ConfigurationF p
A(c) has on the left of0 exactlyl1 left arrows and no right arrows.

Let us recolor the arrows inc so that the leftmostl1 arrows get arbitrary colors, the
following l2 + r2 colors read wordw2 and the colors of the nextl1 + r1 arrows
(which are in positions[0, . . . , l − 1]) read wordw1. The lastl2 arrows can again
be colored arbitrarily. We then have thatc ∈ [u1]0. By property1 the sequence of
colors is the same inF p

A(c), which means thatF p
A(c) ∈ [u2]0. See Fig.6 for an

illustration.
Sincep was an arbitrary sufficiently large number we get that CAA is mixing.

u1

u2

s1 s2 s3 s4 s5 s6

s1s2s3s4s5s6

Figure 6: Transitivity of cylinder[u1]0 to cylinder[u2]0 in the CA of Section3.2.
The first line denotes the initial configuration, where all cells except for the middle
thirty are in stateBLANK .

46 J. Kari, K. Zhang

At last, we prove the set of STP configurations of CAA is dense inSZ. That is
to say, for any wordu ∈ Sl, wherel ≥ 1, we can construct an STP configuration
that containsu as a subpattern.

For any wordu ∈ Sl that is notBLANK -uniform, wherel ≥ 1, we construct
configurationc as follows: c[0 . . . l − 1] = u; c[l . . . 2l − 1] = uR, whereuR is
the mirror image of wordu. For all nonzerok, we setc[2kl . . . 2kl + 2l − 1] =
c[0 . . . 2l− 1], so the configuration is spatially periodic with period2l. Wordu and
its mirror imageuR are alternatingly repeated inc. Next we recolorc by replacing
all green arrows to the left of cell0 by red ones, and by replacing all red arrows
to the right of cell2l − 1 by green ones. This guarantees that the coloring is not
spatially periodic, while the original patternu remains starting in position0.

It is now enough to show thatc is temporally periodic. If we ignore colors, the
configuration is spatially periodic and hence also temporally periodic. By symme-
try, for all integersk, every arrow ofc in the region[2kl, . . . , 2kl + 2l − 1] will
always stay inside it when configurationc evolves. Hence configurationc is STP
(e.g., see Fig.7).

u

u

Figure 7: A subblock of the space-time diagram starting at an STP configuration
in the CA of Section3.2. The first line denotes the middle part of the initial con-
figuration.

Acknowledgments.

The second author is supported by the China Scholarship Council.

References

[1] J. Kari, Theory of cellular automata: a survey,Theoret. Comput. Sci., 334:
3–33, 2005.

[2] A. Dennunzio, P. Di Lena, L. Margara. Strictly temporally periodic points in
cellular automata,18th International Workshop on Cellular Automata and Dis-
crete Complex Systems, 225–235, 2012.

Two transitive cellular automata and their strictly temporally periodic points 47

[3] A. Dennunzio, P. Di Lena, E. Formenti, L. Margara. Periodic orbitsand dy-
namical complexity in Cellular Automata,Fundamenta Informaticae, to ap-
pear.

[4] G. Hedlund, Endomorphisms and automorphisms of shift dynamical systems,
Math. Systems Theory, 3: 320–375, 1969.

[5] B. Codenotti, L. Margara, Transitive cellular automata are sensitive,Amer.
Math. Monthly, 103: 58–62, 1996.

[6] R. L. Devaney,An Introduction to Chaotic Dynamical Systems, Addison-
Wesley, Redwood City, CA, 1989.

[7] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, On the Devaneys definition
of chaos,Amer. Math. Monthly, 99: 332–334, 1992.

[8] P. Kůrka, Languages, equicontinuity and attractors in cellular automata,Er-
godic Theory Dynam. Systems, 17: 417–433, 1997.

[9] L. Acerbi, A. Dennunzio, E. Formenti, Conservation of some dynamical prop-
erties for operations on cellular automata,Theoret. Comput. Sci., 410: 3685–
3693, 2009.

48

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 49

Cellular Automata with Strong

Anticipation Property of Elements

Alexander Makarenko

Institute for Applied System Analysis
at National Technical University of Ukraine,

37 Prospect Peremogy, 03056, Kyiv-36, Ukraine
makalex@i.com.ua, makalex51@gmail.com

Abstract

It is considered the general formulations and properties of cellular
automata with strong anticipatory property of elements. Some exam-
ples are discused including game of ’Life’ with anticipation. Multival-
ued behavior of solutions of such CA is discribed and their possible
consequences for CA theory are proposed.

Keywords. Cellular automata, anticipation, multivalued behavior,
computation theory.

1 Introduction

The history of cellular automata (CA) concept has more then 50 years de-
velopment origin formally from the works of S. Ulam and J. von Neumann
(see the reviews at [1]-[3]). During the development of CA concept the for-
malization of so called classical CA had been proposed. Conditionally the
classical CA is defined on regular lattice of cells; each cell has finite number
of states and transition roles for changing the states exist. The next in time
state of cell depends on cell’s states from sum neighborhood of cell.

Recently the number of investigations as theoretical as applied had been
proposed with classical CA (see for example papers in J. of Cellular Au-
tomata, Proceeding of ACRI, CiE, AUTOMATICA conferences).

At the same time many extending of CA concept have been proposed.
Here we remember only some of them: quantum automata; CA with special
properties (for example non-deterministic); CA with extended spaces for
cell’s states (complex numbers, p-adic, ‘grossones’) [3]-[6]. Also we should
remark CA with the memory [7] and hierarchical CA [8]. Usually new
modifications of CA follow from the new applications of cellular automata.
It is evident that further development of CA also will be related to the new
fields of investigations.

50 A. Makarenko

So in given paper we propose the new class of CA, namely the cellular
automata with anticipatory property. Roughly speaking the anticipatory
property consists in dependence of transitions to next states on presumable
future states of the system. This property is some counterpart to memory
property. One of the most prospective ideas is strong anticipation intro-
duced be Daniel Dubois from Liege (Belgium) [9, 10]. Remark that strong
anticipation is necessary in large socio-economical systems investigation [11].

The structure of the paper is the next. At first we describe the system
with strong anticipation. Then we describe some examples of CA with
anticipatory property and of their solutions behavior. Finally we propose
some further prospects for investigations.

2 Cellular automata with anticipation

2.1 Classical cellular automata description

Here we give the formal description of cellular automata with anticipation.
First of all we follow the papers on CA (see for example [3, 4, 7]). We pose
here the description one-dimensional CA from [7, p.2] but the description
can be modified to many-dimensional case.

‘One-dimensional CA is represented by an array of cells xi where i ∈ Σ
(integer set) and each x takes a value from a finite alphabet Σ. Thus, a
sequence of cells {xi} of finite length n represents a string or global configu-
ration c on Σ. This way, the set of finite configurations will be represented
as Σn. An evolution is represented by a sequence of configurations {ct} given
by the mapping Φ: Σn → Σn; thus their global relation is following

Φ(ct) → ct+1 (1)

where t time step and every global state of are c is defined by a sequence of
cell states. Also the cell states in configuration ct are updated at the next
configuration ct+1 simultaneously by a local function ϕ as follows’

ϕ(xti−r, . . . , x
t
i, . . . , x

t
i+r) → xt+1

i (2)

Also for further comparing and discussion we show the description of CA
with memory from [7, p.3]:

‘CA with memory extends standard framework of CA by allowing every
cell xi to remember some period of its previous evolution. Thus to implement
a memory we design a memory function φ, as follows:

φ(xt−τ
i , . . . , xt−1

i , xti) → si (3)

Such that τ < t determines the degree of memory backwards and each cell
si ∈ Σ is a state function of the series of the states of the cell xi with

Cellular Automata with Strong Anticipation Property of Elements 51

memory up to time-step. To execute the evolution we apply the original
rule as follows:

ϕ(. . . , sti−1, s
t
i, s

t
i+1, . . .) → xt+1

i (4)

In CA with memory, while the mapping ϕ remains unaltered, historic
memory of all past iterations is retained by featuring each cell as a summary
of its past states from φ.’

2.2 Strong anticipation property

The term ‘anticipation’ had been introduced in active using in biology and
applied mathematics by Robert Rosen [12]. So this name is well known for
common researchers. Less known is contribution by Daniel Dubois to strong
anticipation.

Since the beginning of 90-th in the works by D.Dubois – see [9, 10, 13] the
idea of strong anticipation had been introduced: “Definition of an incursive
discrete strong anticipatory system . . . : an incursive discrete system is a
system which computes its current state at time t, as a function of its states
at past times . . . , t − 3, t − 2, t − 1, present time,t, and even its states at
future times t+ 1, t+ 2, t+ 3, . . .

x(t+ 1) = A(. . . , x(t− 2), x(t− 1), x(t), x(t+ 1), x(t+ 2), . . . , p) (5)

where the variable x at future times t + 1, t + 2, t + 3, . . . is computed in
using the equation itself.

Definition of an incursive discrete weak anticipatory system: an incursive
discrete system is a system which computes its current state at timet, as a
function of its states at past times . . . , t− 3, t− 2, t− 1, present time t , and
even its predicted states at future times t+ 1, t+ 2, t+ 3, . . .

x(t+ 1) = A(. . . , x(t− 2), x(t− 1), x(t), x∗(t+ 1), x∗(t+ 2), . . . , p) (6)

where the variable x∗ at future times t+ 1, t+ 2, t+ 3, . . . are computed in
using the predictive model of the system” [10, p. 447].

Thus as the further research problem in the field of CA it should be
considered system with strong anticipation.

The equations (5), (6) are rather new mathematical objects and their
full considerations are the tasks for further investigations.

Remark those systems with anticipation (especially strong anticipation)
early have been investigated in many research fields: biology, computer sci-
ence, social sciences, physics, neurophysiology etc. (see Journal of Com-
puting Anticipatory Systems, Proceedings of Conferences CASYS). Because
of importance of such systems below we describe one of the tools for their
investigations – CA with strong anticipation.

52 A. Makarenko

2.3 Cellular Automata with Strong Anticipation

The key idea is to introduce strong anticipation into CA construction. Of
course many ways exist for implementation such idea. First of all we will de-
scribe one of the simplest. Then we will discuss the results of some computer
experiments with such CA.

For such goal we will suppose that states of the cells of CA can depend
on future (virtual) states of cells. Then the modified rules for CA in one of
possible modifications have the form:

φ(x̄t−τ
i , . . . , x̄t−1

i , x̄ti, x̄
t+1
i , . . . , x̄t+k

i) → s̄t+k
i (7)

ϕ̄(. . . , s̄t+k
i−1 , s̄

t+k
i , s̄t+k

i+1 , . . .) → (x̄t+1
i , x̄t+2

i , . . . , x̄t+k
i) (8)

where k (integer) is horizon of anticipation. But because of presumable
properties of such solutions (multi-valuedness, see examples and discussion
below) the values of variables in (7), (8) have different interpretations. This
is connected with the fact that equation (7), (8) are nonlinear equations
on the values of cell’s states in future moments of time. Such equations
can have one solution, no solutions and many solutions in dependence on
parameters and the current and past states of the cells). So in equations
(7), (8) x̄t+j

i represent all presumable values of cell i at moment t + j and
s̄t+k
i represent all pre-history (multi-valued) for cell i till the momentt+ k.
Remark that in some particular cases (one – valued solutions of (7), (8))
the results correspond to such in equations (3), (4).

Further we for simplicity describe the system of such CA without mem-
ory and only with one-step anticipation k = 1. The general forms of such
equations in this case are:

φ(x̄ti, x̄
t+1
i) → s̄t+1

i (9)

ϕ(. . . , s̄t+1
i−1, s̄

t+1
i , s̄t+1

i+1, . . .) → x̄t+1
i (10)

The main peculiarity of solutions of (9), (10) is presumable multi-validness
of solutions and existing of many branches of solutions. This implies also
the existence of many configurations in CA at the same moment of time.
Remark that this follows to existing of new possibilities in solutions and
interpretations of already existing and new originating research problems.

3 Game ‘Life’ with strong anticipation.

In this subsection we propose very short description of computer experiments
with one of simple CA with strong anticipation – game ‘Life A’. More details
are described in our publications [14, 15].

Let’s consider rules driving the simple classical “Life” [1, 2, 14, 15] with
two possible states of the cells marked as ‘1’ and ‘0’. To formalize the

Cellular Automata with Strong Anticipation Property of Elements 53

transitions roles, we have introduced two auxiliary functions f0 and f1 for
transition from such states. Their values may be represented by different
ways. Here we give below representation by the table form.

Table 1: Auxiliary functions f0(x) and f1(x).
x 0 1 2 3 4 5 6 7 8

f0(x) 0 0 0 1 0 0 0 0 0

f1(x) 0 0 1 1 0 0 0 0 0

Suppose that out of the interval [0;8] both these functions are zero-
valued. Moreover, if the argument is not an integer value, it is rounded to
the nearest integer.

Under the introduced notions next state function for k-th cell will be as
follows: {

f0(Sk), Ck = 0

f1(Sk), Ck = 1
, Fk ∈ {0, 1}, (11)

where Sk – number of (non-zero) neighbors of k-th cell, Ck ∈ {0, 1}(usually
0 interprets as if k-th cell is dead, 1 - otherwise).

Thus, the evolution of an automaton with N cells may be denoted as:

Ct+1
k = F t

k = F (St
k), k = 1...N, (12)

where t – discrete time.

3.1 Roles with anticipation

To endow a model with anticipation property one has to design a next
step function that depends on the next (expected, virtual) cell states [14,
15]. Many possibilities exist to implement it. We took in [14, 15] as the
illustrative example for CA with anticipation the case when the next state
function of classical “Life” defined as:

F t
k = F (St

k) (13)

had been replaced by:

F t
k = F ((1− α) · St

k + α · St+1
k), α ∈ [0, 1] (14)

or
F t
k = F (St

k + α · St+1
k), α ∈ R (15)

Such rules correspond to ‘integral’ accounting the future virtual states
by counting only number of presumably occupied cells in the neighborhood
of the cell at future moment of time. Further, these two variants of a next

54 A. Makarenko

state function will be referred to as weighted and additive, correspondingly.
Cellular automata driven by either of these functions were implemented as
the computer program.

Below we pose for illustration of presumable behavior of such game
‘Life A’ with anticipation only one picture. The figure below corresponds to
the case with 16 cells with periodic boundary conditions.

Figure 1: Comparison the solutions of classical game ‘Life’ (left side) and of
game ‘Life A’ with strong anticipation (right side).

Only 3 discrete time steps are represented at Fig. 1 and at right side of
the figure we see possible branching of the solution, existing of many values
of cellular state and multiplicity of configurations (more examples see at
[14, 15]). So we can anticipate that such kind of behavior is typical to CA
with strong anticipation.

4 Discussions and further research problems

As we hope described results open new possibilities for receiving interesting
results as in CA behavior as in interpretations of presumable solutions. Here
we describe only few of such possibilities (more we suppose to describe in
separate publications.

1. At first we remember the new possibilities in considering of non-
deterministic CA (and moreover usual automata). Non-deterministic au-

Cellular Automata with Strong Anticipation Property of Elements 55

tomata allow few transition ways from one state to others [4, 16, 17]. Usu-
ally it is supposed that such structure is only theoretical and in reality only
one of the ways is used in each transition. CA with anticipation opens the
natural possibility for considering of the systems with many different ways
in parallel. Accepting possibilities of physical realization of strong anticipa-
tory systems it may be accepted existence of CA with many branches. Also
such systems are interesting as multi-valued dynamical systems.

2. In proposed paper we have considered only the case of finite alphabet
for indexing the cell’s states. But previous investigations of dynamical sys-
tems with strong anticipation show the possibilities of existing the solutions
with infinite numbers of solution branches [18]. This allows introducing CA
with infinite number of cell’ states (or at least infinite alphabet for CA).

3. The generalizations from point 1 and 2 at this subsection and anal-
ysis of automata and CA theories origin follows to presumable considering
of some aspects of computation theory (see [14, 15, 19]). The short list of
topics may be the next: computability; Turing machines; automata and lan-
guages; recursive functions theory; models of computation; new possibilities
for computations with accounting possible branching.

Conclusion

Thus in given paper we describe first results on cellular automata with
anticipatory property. This results show the new possibilities in theory and
applications of such objects.

Acknowledgements

The author would like to give the appreciation for D. Krusinsky for computer
realizations of models and for D. Krushinski and B. Goldengorin for some
discussions.

References

[1] Wolfram S. New kind of science. Wolfram Media Inc., USA, (2002).

[2] Illiachinski A., Cellular Automata. A Discrete Universe. World Scien-
tific Publishing, Singapoure, (2001).

[3] Kari J. Theory of cellular automata: A survey. Theoretical Computer
Science, 334, 3-33 (2005)

[4] Kutrib M. Non-deterministic cellular automata and languages. Int.
Journal of General Systems. 41, 555 – 568. (2012)

56 A. Makarenko

[5] Sergeyev Ya.D., Garro A. Single-tape and multi-tape Turing machines
through the lens of the Grossone methodology, Journal of Supercom-
puting, 65(2), 645-663. (2013)

[6] D’Alotto . Cellular Automata Using Infinite Computations, Applied
Mathematics and Computation, 218(16), 8077-8082. (2012).

[7] Martinez G.J., Adamatzky A., Alonso-Sanz R. Complex dynamics of
elementary cellular automata emerging from chaotic rules. Int. Journal
of bifurcation and chaos, 22, 1250023, (2012).

[8] Bandini S., Mauri G. Multilayered cellular automata. Theoretical Com-
puter Science, 217, 99-113, (1999).

[9] Dubois D., Generation of fractals from incursive automata, digital dif-
fusion and wave equation systems. BioSystems, 43, 97-114, (1997).

[10] Dubois D., Incursive and hyperincursive systems, fractal machine and
anticipatory ence. Published by the American Institute of Physics, AIP
Conference Proceedings 573, 437 – 451, (2001).

[11] Makarenko A., Anticipating in modeling of large social systems - neu-
ronets with internal structure and multivaluedness. International .Jour-
nal of .Computing Anticipatory Systems, 13, 77 - 92. (2002).

[12] Rosen R., Anticipatory Systems. Pergamon Press. (1985).

[13] Dubois D., Introduction to Computing Anticipatory Systems. Interna-
tional Journal of Computing Anticipatory Systems, 2, 3-14. (1998).

[14] Makarenko A., Goldengorin B., Krushinsky D., Game ‘Life’ with An-
ticipatory Property. Proceed. Int. Conf. ACRI’08, Eds. Umeo, H. et al,
LNCS 5191, (2008). pp. 77-82.

[15] Krushinskiy D., Makarenko A., Cellular Automata with Anticipation.
Examples and Presumable Applications. AIP Conf. Proc., vol.1303, ed.
D.M.Dubois, USA, (2010). pp. 246-254.

[16] Cooper S. Barry Computability Theory. Chapman Hall/CRC (2003)

[17] Sipser M. Inrtoduction to the theory of computation. Second edition.
Thomson Course Technology, USA (2006).

[18] Makarenko A., Stashenko A. Some two- steps discrete-time anticipa-
tory models with ’boiling’ multivaluedness. AIP Conference Proceed-
ings, vol.839, ed. Daniel M. Dubois, USA, (2006). pp.265-272.

[19] Makarenko A. Cellular automata and some problems in concepts recon-
struction. Herald of Chmelnickiy State University (Ukraine), 2, 248-251,
(2007). (in Russian).

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 57

Computational complexity of majority automata

under different updating schemes

Pedro Montealegre ∗ Eric Goles †

August 17, 2013

Abstract

The majority automata is the one where the satiate at each site is
decided by a majority rule of the sites in its neighborhood. We study
the computational complexity of predict the changes in the state of
a given vertex from an initial configuration, and how this complexity
is affected over changes in the updating scheme. A block sequential
updating scheme is the one where the vertex set is partitioned, and ev-
ery partition is updated synchronously, but sequentially with respect
to the others. We show that for sequential and synchronous updat-
ing schemes, the problem is P -Complete, but for any block sequential
updating scheme the problem is NP -Hard. We conjecture that this
problem is PSPACE-Complete.

Keywords: Majority automata, Computational Complexity, Updating
Scheme, P-Complete, NP-Hard

1 Introduction

Let G = (V,E) be a simple undirected graph, where V = {1, ..., n} is the
set of vertices, E the set of edges. An Automata Network is a triple A =
(G, {0, 1}, (fi : i ∈ V)), where, {0, 1} is the set of states and fi : {0, 1}|V | →
{0, 1} is the transition function associated to the vertex i. The set {0, 1}|V |
is called the set of configurations, and the automaton’s global transition
function F : {0, 1}|V | → {0, 1}|V | is constructed from the local functions
((fi : i ∈ V)). In this paper we consider the majority functions, i.e.:

fi(x) =

{
1 if

∑
j∈N(i) xi >

|N(i)|
2

0 if
∑

j∈N(i) xi ≤
|N(i)|

2

∗LIFO, Université d’Orléans, 45067 Orléans Cedex 2, France. Email:
pedro.montealegre@etu.univ-orleans.fr
†Facultad de Ciencias y Tecnoloǵıa, Universidad Adolfo Ibáñez, Santiago, Chile. Email:

eric.chacc@uai.cl

58 P. Montealegre, E. Goles

where N(i) is the set of neighbors of vertex i. We say that vertices in state
1 are active while vertices in state 0 are passive. An automata network with
this rule is called a majority automata.

An updating scheme of the automata A is a function φ : V → {1 . . . |V |}
such that if u and v are vertices and φ(u) < φ(v) then the state of u is
updated before v, and if φ(u) = φ(v) then nodes u and v are update at the
same time. When φ(v) = 1 for every vertex v, i.e. all vertices are updated at
the same time, we have the synchronous updating scheme. When φ(v) = σv,
where σ is a permutation of the set of vertices, we have a sequential updating
scheme. A block sequential updating scheme is the one where the vertex set
is partitioned into several subsets, such that into the same set every vertex
is updated at the same time, and different subsets are updated sequentially
in some order.

The trajectory of a configuration x for an updating scheme φ is the set
T (x) = {x(t) : t ≥ 0} where x(0) = x and x(t + 1) = (fi(x(t))φ, where
(y)φ denotes the update of the local functions under the scheme φ. We
say that the trajectory of x enters in a limit cycle of period p if for some
t the set {x(t), x(t + 1), . . . , x(t + p − 1)} has p − 1 different values, and
x(t+ p) = x(t); in other words if |T (x(t))| = p. A cycle of period 1 is a fixed
point. Naturally, since the graph has a finite number of vertices, there are
at most 2|V | different configurations and then, for every configuration x in
any graph, local rule and updating scheme, every trajectory reaches a limit
cycle. We call that limit cycle the steady state given by x.

We define the transient length of an initial configuration x under the
updating scheme φ, τφ(x) as the number of steps to reach the steady state,
and we denote the transient length of the automaton A under the updating
scheme φ as the the greatest of these values:

τφ(A) = max{τφ(x) : x ∈ {0, 1}|V |}.

We define the complexity of the majority automata as the computational
complexity of the following decision problem of predict changes on a vertex,
given an initial configuration:

MAJORITY: Consider the majority automaton A = (G, {0, 1}, (fi : i ∈
V)), x ∈ {0, 1}|V | a configuration of G, v ∈ V a vertex initially passive
(xv = 0), and φ an updating scheme of G . Does there exists T > 0 such
that xv(T) = 1 when the updating scheme φ is applied?

In the following sections, we will study how does the complexity of the
majority automata changes when we apply different updating schemes. In
Section 2 we will show that for both sequential and synchronous updating
schemes, this problem is P -Complete. After that, in Section 3, we will show
that for block sequential updating schemes the problem is unlikely to be in

Computational complexity of majority automata under
different updating schemes 59

P , by showing that block of size two are enough to prove NP -Hardness.
Finally we will give some conclusions.

2 Complexity of majority automata with synchronous
and sequential updating schemes

In this section, we will show that the problem MAJORITY for threshold
automata is in P for the synchronous and any sequential updating schemes.
Clearly for any configuration x, F (x) can be computed in polynomial time,
just evaluating the local functions in the order of the vertices given by the
updating scheme. The idea then is to show that the number of steps that
one should simulate to decide MAJORITY is polynomial in the size of the
graph.

Before showing the theorem, we define A as the automata over the same
graph that A, but with local function:

fi(x) =

{
1 if

∑
j∈N(i) xi > θi

0 if
∑

j∈N(i) xi ≤ θi
where θi = |N(i)|

2 if |N(i)| is odd, and θi = |N(i)|+1
2 if |N(i)| is even. Clearly

the dynamics of A and A are the same, but with A we can ensure that the
threshold

∑
j∈N(i) xj 6= θi, for every i ∈ {1, . . . , n}, which is a condition that

we will need for the next theorem.

Theorem 1. For both the synchronous and sequential updating schemes,
the problem MAJORTY is in P .

Proof. We will use the results obtained in [1], [2]. LetA = (G, {0, 1}, (fi : i ∈
V)) be a the majority automata, and let η : R→ {0, 1} be the threshold func-

tion η(x) =

{
1 if x ≥ 0
0 if x < 0

. We can characterize any threshold automata

using the following function: fi(x) = η
(∑

j∈N(i) xj − θi
)

where θi = |N(i)|
2

if |N(i)| is odd, and θi = |N(i)|+1
2 if |N(i)| is even. If η : R|V | → {0, 1}|V |

is the multidimensional threshold function: η((xi)i∈V) = (η(xi))i∈V , then
the synchronous updating scheme can be characterized as F (x) = η(Ax− b)
where A = (aij) is the adjacency matrix of G and b is a vector of size |V |
with bi = θi.

Using this characterization, consider T (x) be a trajectory of the majority
automata with initial condition x, and define the following functional for
t ≥ 1:

E(x(t)) =
∑

i∈V
(2bi −

∑

j∈V
aij)(2xi(t) + 2xi(t− 1)− 2)

−(2xi(t)− 1)
∑

j∈V
aij(2xj(t− 1)− 1)

60 P. Montealegre, E. Goles

then if ∆tE = E(x(t))− E(x(t− 1)) we have that

∆tE = −4
∑

i∈V
(xi(t)− xi(t− 2))(

∑

j∈V
aijxj(t− 1)− bi) ≤ 0

and then E is a strictly decreasing function. Hence, if {x(t) : t ∈ [t1, t2]}
is a cycle, then E(x(t)) is necessarily constant for any t ∈ [t1, t2]. Actually,
since for any x ∈ {0, 1}|V | and i ∈ V we have

∑
j∈V aijxu 6= bi, then the

steady states are only fixed points and/or cycles of length two, i.e. t2 = t1
or t2 = t1 + 2.

Then we have that for any initial configuration, the dynamics necessarily
enters in a cycle of length at most 2. Remember that τφ(A) is the transient
length of A with updating scheme φ, this is, the maximum number of steps
required to enter into a steady state. Also by a result in [1], [2] we have that
τφ(A) ≤ |V |3 . This tells us that in a number of steps that is polynomial
in the size of the input, the trajectory enters into a cycle of length 2. Since
any iteration can be simulated in polynomial time, MAJORITY is in P
for the synchronous updating scheme.

For any sequential updating we use the same approach. But in this case
the decreasing functional is given by:

E(x) = −1

2

∑

i∈V

∑

j∈V
aijxixj +

∑

i∈V
bixi

then, following [1], [2], we prove the dynamics converges always to fixed
points in at most O(|V |3) steps, so in polynomial time.

Once that we have proved that the problem MAJORITY is in P for
synchronous and sequential updating schemes, a straight forward question
is what else can we say for this updating schemes, this is, determine if
the problem is in some subclass of P , like NC, or it is P -Complete. In
this context, in [3], [4] is shown that for the synchronous updating scheme
the problem MAJORITY is P -Complete. The proof is done reducing to
MAJORITY the Monotone circuit value problem, which is a well known P -
Complete problem. This hardness results can easily be adapted to sequential
updating schemes, and then we have the following theorem:

Theorem 2. For the majority automata and both the synchronous and se-
quential updating schemes, the problem MAJORITY is in P -Complete.

In the next section, we will show that for block sequential updating
schemes the problem is unlikely to be in P , by showing that blocks of size
two are enough to prove NP -Hardness.

Computational complexity of majority automata under
different updating schemes 61

3 Block sequential updating scheme

In the proof of Theorem 1, the strategy to obtain the membership in P was
to demonstrate that in a polynomial number of steps the automata enters
into a steady state, and the steady state is small (cycle of length at most
2). Since to simulate a step of the dynamics can be done in polynomial time
(just calculating the new state of every vertex), and we have to simulate
just a polynomial number of steps, then we can decide in polynomial time.

But the fact that MAJORITY belongs to P for the synchronous and
asynchronous updates seems not easy to generalize to other updating schemes.
Actually, as we prove in next theorem, very simple updating schemes allows
super-polynomial limit cycles and transient lengths, which implies that we
can not (is very unlikely to be possible to) bound the number of steps by a
polynomial by using the energy functional approach.

Theorem 3. There is a block sequential update scheme in a majority au-
tomata, such that each block has cardinality 2 and the limit cycle has a
exponential length.

Proof. A ladder of length k (Figures 1 and 2) is a graph with 2(k+1) vertices,
such that can be updated in some scheme in order to obtain a limit cycle
of length k. One can connect two ladders as shown in Figure 3, and then
obtain that the limit cycle is the last common multiple (lcm) of the lengths
of the two ladders.

1

1

2

2

3

3

4

4

1

1

2

2

3

3

4

4

1

1

2

2

3

3

4

4

Figure 1: A ladder of length 3. Gray vertices represent active ones, and
vertex numbers represent its value for the updating scheme. Notice that we
obtain a limit cycle of length 3.

To obtain a lower bound of the periods, we follow the arguments de-
veloped in [5]. Let m a positive integer, and let l = π(m) the number of
primes not exceeding m. Let G the graph obtained from π(m) ladders of
sizes p1, p2 . . . , pπ(m), where {p1, p2 . . . , pπ(m)} the first π(m) primes. We
have then that

V (G) ≤
π(m)∑

i=1

2(pi + 1) ≤ 2π(m)(m+ 1) (1)

62 P. Montealegre, E. Goles

1

1

2

2

k

k

k-1

k-1

k-2

k-2

k-3 steps

1

1

2

2

k

k

k-1

k-1

k-2

k-2

1

1

2

2

k

k

k-1

k-1

k-2

k-2

Figure 2: A ladder of length k − 1.

1

1

k

k

k+1

k+1

k+s

k+s

Figure 3: A ladder of length k− 1 united with a ladder of length s− 1. The
limit cycle of this graph is lcm(k − 1, s− 1).

and

lcm(p1, . . . , pπ(m)) =

π(m)∏

i=1

pi = eθ(m) (2)

where θ(m) =
∑π(m)

i=1 log(pi). From the Prime Number Theorem [6] we
know that π(m) = Θ(m/ log(m)), furthermore in [6] is shown that θ(m) =
Θ(π(m) log(m)), which together with (1) and (2) imply that

lcm(p1, . . . , pπ(m)) ≥ eΩ(
√
|V (G)| log(|V (G)|))

and then the length of the limit cycle of G is not bounded by any polynomial
in |V (G)|.

Notice that trivially from Theorem 2, the problem MAJORITY P -
Hard for block sequential updating schemes. Clearly this problem belongs
to PSPACE. Indeed, to simulate any step of the dynamics for any updating
scheme, we just need both times the size of the graph, one for read the actual
state, and the other for write the new state. We conjecture that this problem
is PSPACE-Complete. Using the gadgets of Theorem 3 we can show that
the problem is NP -Hard.

Theorem 4. The problem MAJORITY is NP -Hard for block sequential
updating schemes.

Computational complexity of majority automata under
different updating schemes 63

Proof. We will show that MAJORITY is NP -Hard by reducing to it the
problem 3-SAT . Remember that 3-SAT is the Boolean satisfiability prob-
lem to instances with exactly three variables per clause.

Let φ an instance of 3-SAT . For every variable xi of φ, we will build
a gadget which consists in a subgraph with long cycle length using the
ladders of the proof of Theorem 3. The idea is that at every step we will
be simulating a different truth assignment of the variables. The reduction
then consists in 3 layers: The first layer will have the gadget for simulating
the variables. In the second layer we simulate every clause by joining three
different variables with a node that will simulate the OR function. Finally,
in the third layer we join every OR gadget to a vertex that simulate an
AND function.

Let {x1, . . . , xn} the variables of φ, and let {p1, . . . , pn} the fist n primes.
The variable xi is simulated by the gadget shown in Figure 4, where we
simulate both xi and xi. The gadget is build from two different ladder
gadgets of length pi. Two vertices, which are updated after every vertex in
the ladder, will represent then xi and xi. Then xi is active and xi passive
in the steps that are multiple of pi, and in the others is xi is passive and xi
active.

k

qi

qi

k

qi

qi1

1 1

1

2

2 2

2

xi

xi

Figure 4: Variable xi. Gray vertices represent active ones, and vertex num-
bers represent its value for the updating scheme. In the figure qi = pi + 1,
and then the ladder make a cycle of length pi. Also in the figure k = pn + 2,
and then the vertices that simulate xi and xi are updated after every ladder.

With this construction, we can go over every combination of input val-
ues of φ. For example, if n = 5 (i.e. φ have 5 variables) then the input
combination (x1, x2, x3, x4, x5) = (1, 0, 1, 0, 1) will occur after p1× p3× p5 =
2 ∗ 5 ∗ 11 = 110 steps.

Let Ci = (xs1i1 ∨x
s2
i2
∨xs3i3) the i-th clause of φ, where i1, i2, i3 = {1, . . . , n},

and s1, s2, s3 ∈ {0, 1} such that x1
i = xi and x0

i = xi. We build then the
gadgets for xi1 , xi2 and xi3 and a new vertex that simulate the OR function,
and join them according to de values of s1, s2, s3, as shown in Figure 5. The
vertex that simulate the OR function will be updated after every vertex in

64 P. Montealegre, E. Goles

the gadgets of the variables.
Finally, we connect every clause gadget to a vertex that simulate the

AND function, that can be build using an initially passive vertex joined
with m − 1 initially passive vertices, where m is the number of clauses.
We have then that this vertex (the one that simulates the AND function)
will become active in some step, if and only if there exists a truth value
assignation of the variables x1, . . . , xn such thatφ(x) is true.

k

qi3

qi3

k

qi3

qi31

1 1

1

2

2 2

2

xi3

k

qi2

qi2

k

qi2

qi21

1 1

1

2

2 2

2

xi2

xi2

k

qi1

qi1

k

qi1

qi11

1 1

1

2

2 2

2

xi1

xi1

k + 1

xi3

Figure 5: Clause Ci = (xi1 ∨ xi2 ∨ xi3). In the figure qi = pi + 1 and
k = pn + 2, where pi is the i-th prime. Gray vertices represent active ones,
and the numbers in the vertices are the value of the vertex in the updating
scheme. Vertices without number can be updated any time.

From the Prime Number Theorem [6], we have that pn = O(n log(n)).
Since the input is of size O(n), then we can compute the first n primes can
in polynomial time, and then in polynomial time we can build the gadgets
for each variable of φ. Clearly all the steps of this reduction can be done in
polynomial time, and then MAJORITY is NP -Hard.

4 Conclusions

We have discussed how the computational complexity of majority automata,
and how it is affected over changes in the updating scheme. While for the
synchronous and sequential updating scheme MAJORITY is P -Complete,
for the block sequential updating schemes we have shown that the problemis
NP -Hard. We conjecture that MAJORITY is PSPACE-Complete.

Finally, a notion of complexity can be defined for automata networks
(in general, not only for majority automata) and updating scheme. If we
say that the complexity of an automata is the complexity of the prediction
problem, then an automata have a portable complexity if the complexity of
the problem does not depend on the updating scheme. A future work could
involve the search for this kind of automata.

Computational complexity of majority automata under
different updating schemes 65

References

[1] E. Goles-Chacc, F. Fogelman-Soulie, D. Pellegrin, Decreasing energy
functions as a tool for studying threshold networks, Discrete Applied
Mathematics 12 (3) (1985) 261–277.

[2] E. Goles-Chacc, Comportement oscillatoire d’une famille d’automates
cellulaires non uniformes, Thèse IMAG, Grenoble.

[3] C. Moore, Majority-Vote Cellular Automata, Ising Dynamics, and P-
Completeness, Journal of Statistical Physics 88 (1997) 795–805.

[4] P. Montealegre-Barba, Redes de autómatas y complejidad computa-
cional, Departamento de Ingenieŕıa Matemática, Facultad de Ciencias
F́ısicas y Matemáticas, Universidad de Chile, 2012.

[5] M. A. Kiwi, R. Ndoundam, M. Tchuente, E. Goles, No polynomial bound
for the period of the parallel chip firing game on graphs, Theoretical
Computer Science 136 (2) (1994) 527–532.

[6] G. H. Hardy, E. M. Wright, D. R. Heath-Brown, J. Silverman, An Intro-
duction to the Theory of Numbers, Oxford mathematics, OUP Oxford,
2008.

66

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 67

Identification of Non-Uniform Periodic Boundary
Cellular Automata having only Point States∗

Nazma Naskar1, Sumit Adak2, Sukanta Das2
1Department of Information Technology

Seacom Engineering college, Howrah,711302, India.
2Department of Information Technology

Bengal Engineering and Science University, Shibpur, 711103, India.
E-mails: naskar.preeti@gmail.com,

maths.sumit@gmail.com, sukanta@it.becs.ac.in

Abstract

This paper identifies the 1-dimensional non-uniform cellular au-
tomata having only point state attractors under periodic boundary
condition. To do this, we first identify the point state attractors of the
given automaton. Then the cyclic states of the automaton is counted.
If the number of point states (which are also cyclic states) are equal
with that of total cyclic states, we declare that the cellular automaton
is having only point state attractors. To do these task, reachability
tree, a discrete tool for characterizing cellular automata, has been uti-
lized.

Keyword: Periodic boundary CA, Point State Attractor, Reachability
Tree, cyclic states, Rule Min Term (RMT).

I Introduction

The cellular automata (CA) are classified into different categories depending
on several factors, like dimension, neighbourhood, boundary condition, etc.
In this work we concentrate on only one-dimensional CA. Further, we con-
sider the boundary condition as periodic (PBCA). It is traditionally assumed
that all the CA cells follow the same local rule. We have, however, considered
this work that different cells may follow different rules (non-uniform CA).

In recent years, non-uniform CA have gained a huge attention, and they
have been targeted to model several real life applications, such as VLSI de-
sign and test, pattern recognition and classification, cryptography, etc [1,4].

∗This work is supported by AICTE Career Award fund (F.No.- 1-51/RID/CA/29/2009-
10).

68 N. Naskar, S. Adak, S. Das

However, in almost all works, null-boundary CA have been considered. A few
works on reversibility [2] and number conservation [1] of non-uniform PBCA
have been reported recently. No work, however, on non-uniform PBCA that
contain only point state attractors in their state space has been reported
till date. It has been shown in literature [1, 4] that CA having only point
states can be efficiently utilized in pattern classification. In this scenario,
this research undertakes the issue of identifying non-uniform PBCA that are
having only point state attractors. To do this, we first count the cyclic states
in a given CA. Such counting for PBCA, in fact, an unaddressed issue. Our
approach is, count the cyclic states and count the point states (which are
obviously cyclic states), and if they match, then declare that the automaton
contains only point states.

II CA Preliminaries

A CA, consists of regular grid of cells in the form of lattice [5], evolves
in discrete space and time. A cell’s state depend on its own state and its
neighbouring cell’s states. In a 3-neighbourhood dependency, the next state
St+1
i of a cell of 1-dimensional CA is denoted as St+1

i = fi(S
t
i−1, S

t
i , S

t
i+1),

where fi is the next state function; St
i−1, S

t
i and St

i+1 are the present (local)
states of the left neighbour, self and right neighbour of the ith CA cell. The
collection of states St(St

1, S
t
2, · · · , St

n) of cells at time t is the present state
of CA having n cells. If St

0 = St
n and St

n+1 = St
1 , then the CA is called

periodic boundary CA. Here we are concerned about periodic boundary CA
(PBCAS).

The function of next state of ith cell CA can be expressed in the form of
a table (Table 1a). The decimal equivalent of the 8 outputs is traditionally
called as Rule [5]. In such CA, there are a total of 22

3 (256) rules. The
first row of the Table 1a lists the possible 23 (8) combinations of the present
states of left, self and right neighbours. We refer each column as Rule Min
Term (RMT) [3].

The set of rules R = 〈R1,R2, · · · ,Rn〉 where cell i acts with Ri is called
rule vector. If R1 = R2 = · · · = Rn, then the CA is uniform CA, otherwise
non-uniform CA. Hence, uniform CA are special cases of non-uniform CA.

A CA contains cyclic and acyclic states. If a single state recursively
(RMTs without any merging are self merged) evolved around itself we call
it as a point state attractor. If a cycle has more than one state then we
call it multi length cycle attractor. The state transition (sequence of states
generated) diagram of a four cell CA is shown in Fig. 1, from where we
conclude that the states 0100, 0101, 0110, 0001, 0011, 0111, 1001, 1010,
1000, 1011, 1111, 1101 are non-reachable states, whereas 1110 and 1100 are
having more than one predecessor [3] as well as they are in a multi length
cycle attractor. States 0000 is point state attractor.

Identification of Non-Uniform Periodic Boundary Cellular Automata
having only Point States 69

Present state: 111 110 101 100 011 010 001 000 Rule
(RMT) (7) (6) (5) (4) (3) (2) (1) (0)

(i) Next State: 1 1 0 0 1 1 0 0 204
(ii) Next State: 1 1 1 1 0 0 0 0 240
(iii) Next State: 0 0 1 1 0 0 0 0 48
(iv) Next State: 0 0 0 0 0 0 0 0 0

(a)
ith RMT (i+ 1)th

RMTs
0 or 4 0, 1
1 or 5 2, 3
2 or 6 4, 5
3 or 7 6, 7

(b)

Table 1: (a) Truth table for rule 204, 240, 48 and 0. (b) Relationship between
RMT s of cell i and cell (i+ 1) for next state computation

1 0 1 0

1 1 0 0
1 0 0 0

0 1 0 1 0 0 1 0 0 1 0 0

0 0 0 11 0 1 1

0 0 0 00 1 1 0

1 1 0 1

1 1 1 0

1 0 0 1

1 1 1 1

0 0 1 1

0 1 1 1

Figure 1: State transition diagram of CA 〈204, 240, 48, 0〉

A CA state can be viewed as a sequence of RMTs, called RMT sequence
(RS) [3]. To get an RS for a state, we consider a 3-bit window that slides
over the state and contains a 3-bit binary value which is equivalent to RMT.
Using this mechanism, we get relation between different RMTs (Table 1b).
It tells that if ith cell RMT is 2, then the RMT of (i+ 1)th cell is 4 or 5.

Definition 1 Two RMTs sibling RMTs if they are resulted from an RMTs
i. For example, RMTs 0 and 1 are sibling RMTs (Table 1b)

Reachability tree: Reachability tree (RT) is a characterization tool for
periodic boundary CA. It is a binary tree that represents the reachable states
[2] of a CA. We can define reachability tree (RT) as set of nodes (N) and
edges (E). Each edge (E)/ node (N) represents set of RMTs, where RMTs
are divided into four groups. In case of root node, sibling RMTs are form
single group.

The left edge of tree represent 0-edge, where as right edge represent 1-
edge. For ith level, each edge is constructed according to the RMTs of Rule
Ri+1. Nodes of ith level is constructed by successor RMTs of corresponding
edge at (i−1)th level. Edge (node) of RT is denoted by Ei.j (Ni.j) where i is

70 N. Naskar, S. Adak, S. Das

1 3 5 70 2 4 6 0 2 4 6

6 ,__, 1 320 7 , ___ 4,__, 5

0 2 4 61 3 5 7

1 5 7340 6,__, 2 , ___ 1 3

04 , ___6,__, 2 0,__,2,__

, ___,__, 0 2 1 5 7340 6,__, 2 , ___ 1 3

04 , ___6,__, 2 0,__,2,__

, ___,__, 0 2

4,__, 5___,6 ,__, 1 320 7

 < 0 1, 2 3 , 4 5 , 6 7>

0 1 , __ , 4 5 , __ __ ,2 3 , ___ , 7 6

< __, 4 5 6 7, ___ , 4 5 6 7>< 0 1 2 3 , __ ,0 1 2 3 , ___>

(0) (1)
E E

(0)

N

NN

0. 0

1. 0

0. 0 0. 1

1. 1

E1. 0
2. 0N

 __, 4 5 6 7, ___ , 4 5 6 7

___ , ___ ,, 1 3 5 7

(1) 0 1 2 3 , __ ,0 1 2 3 , ___

, ___

, ___ ,__, 1 3 5 70 2 4 6

___,

Figure 2: Reachability tree of PBCA 〈121, 192, 12, 224〉

level index and j is the jth edge (node) of ith level, value of j varies from 0
to 2i−1 . If any edge (node) of reachability tree does not contain any RMT,
then call that edge (node) as non-reachable edge (node). For example E1.1

(N2.1) and E1.2 (N2.2) is non-reachable edge (node) of Fig. 2.
At (n− 2)th level we discard odd RMTs from first two sets (first set and

second set) and discard even RMTs from last two sets (third set and fourth
set) at each node. For example in 2nd level of Fig. 2 in node N2.1 RMTs 1,
3, 5 and 7 from first set and RMTs 0, 2, 4 and 6 from fourth set are dropped.
In (n − 1)th level, we allow those RMTs only in a set which is capable to
produce RMTs at corresponding set number in edge of first level. For any
node of (n−1)th level in first group only RMTs 0 and 4 can reside. Whereas,
in second group only RMTs 1 and 5, in third group only RMTs 2 and 6 and
in fourth group only RMTs 3 and 7 can reside respectively. For example, in
N3.1 we have four RMTs 0, 1, 4 and 5 in first set. Whereas at first set, in E1.1

we have two RMTs 0 and 1. Between RMTs 0, 1, 4 and 5 only RMTs 0 and
4 is capable to generate RMTs 0 and 1, so RMTs 1 and 5 will be discarded.

III Processing of reachability tree

Reachability tree does not explicitly depict the transitions of states like state
transition diagram Fig. 1b. But the transitions of states can be traced from
the reachability tree. We know, in the tree, a sequence of edges from root
to a leaf node associates a reachable state and at least one RMT sequence
which corresponds to the predecessor of the state. To process the reachability
tree, we first find the predecessors RMT of each RMT and then make the
links.To decide whether an automaton contains only point states, we process
corresponding RT to count cyclic states. Now, to count cyclic states firstly
we process the reachability tree of CA and remove the non-reachable states.
Then identify new non-reachable states. To implement this procedure we

Identification of Non-Uniform Periodic Boundary Cellular Automata
having only Point States 71

introduce the concept of linkcount, which indicates that how many time we
have to process an RMT.

Definition 2 At ith level, an RMT r has linkcount n implies, at (i − 1)th

level n number of predecessor RMTs or link exist of RMT r.

Definition 3 An RMT x0y (x1y) is said to be self replicating if RMT x0y
(x1y) is 0 (1).

For example, RMTs 0, 1, 6 and 7 of rule 240 is self replicating, whereas
RMTs 2, 3, 4 and 5 of rule 240 are not self replicating (Table 1a). A state
refers to a point state attractor if all the RMTs of the RS are self replicating.

We consider in the tree processing that all the cyclic states form point
state attractors. So, only self replicating RMTs are to be present in the
finally processed tree. If an RMT is self replicating then we call this position
of the RMT on this edge of the tree is stable. During processing, if an RMT
is not in its stable position, we make a link of the RMT from its current
position (edge) to stable position (edge). We call such implication of an
RMT as merging. The merging of an RMT depends on the RMT value and
the merging of its predecessor RMT.

Based on position of merged RMT and destination edge, we have three
type of merging. If any RMT appears in any edge Ei.j and merged to other
edge Ei.k and j < k (j > k), then we call the merging as forward (backward)
merging. If any RMT appears and merges in same edge Ei.j , then we call
the merging as self merging.

IV Identification of point state attractors in PBCA

Firstly we try to identify point states of PBCA. A point state occurs when
corresponding RMTs of RS are self replicating. Self replicating RMTs help
to create self merging, sequences of self merging from root level to leaf level
results point state attractor. Using the concept of merging, we can identify
the point states where the self merging RMTs are allowed to stay, and rest
are discarded. In this way, we process the reachability tree from root node
to leaf nodes. At leaf level, if some nodes are left, we consider them as point
state attractors. Following algorithm counts the number point states in a
given PBCA.

Algorithm 1 IdentifyPointAttractor
Input: 〈R1, · · · ,Ri, · · · ,Rn〉 (n-cell CA).
Output: number of point attractors.
Step 1: Repeat Step 2 to Step 4 for i = 1 to n
Step 2: Identify the left and right edges of each node for ith level (based on
Ri).

72 N. Naskar, S. Adak, S. Das

4 6
0 21 3

5 7

1 3

 < 0 1, 2 3 , 4 5 , 6 7>

0 1 , __ , 4 5 , __ __ ,2 3 , ___ , 7 6

< __, 4 5 6 7, ___ , 4 5 6 7>< 0 1 2 3 , __ ,0 1 2 3 , ___>

(0) (1)
E E

(0)

N

NN

0. 0

1. 0

0. 0 0. 1

1. 1

E1. 0
2. 0N

___ ,, 5 7

(1)

, ___ ,__, 1 30 2

___,

0 , ___,__,

 0 1 , __ ,0 1 , ___ __, 6 7, ___ , 6 7

, ___1 7 ___,4,__, 56 ,__, ,__, 0

4 6___ ,

0 ,__, 2 , ___

Figure 3: Tree for attractors

(i) Form a link from the edge of an RMT to the edge which is the
stable position of the RMT.
Step 3: Check at ith level any self merging is there ?

If yes, then goto step 4.
If No, then Report CA does not contain any point attractor.

Step 4:(i) Store only self merged RMTs.
(ii) Create nodes for (i+ 1)th level with only successor RMTs of self

merged RMT at ith level.
Step 5: If (i = n) then,

count total reachable state and Report the number and state(s) are as
point attractor.
Step 6:End.

Performance Analysis : Merging depends on (i− 1)th level and ith level (ex-
cept root). But in this algorithm, in ith node we process those RMTs which
predecessor RMT at (i−1)th edge was self merged and others RMTs are dis-
carded. So, knowledge about the present level is enough in here and therefore
the complexity of the Algorithm 1 is linear.
Example 1: Fig 3 extracts point states from Fig. 2 using Algorithm 1. At
root level RMTs 0 to 8 all are self merged, so in Fig.3 these RMTs stay. We
store the successor RMTs of RMTs 0 to 8 for next level. In the 1st level
successor RMTs 0, 1, 6 and 7 are self merged, so we preserve them. In the
2nd level, we get only one effective edge, namely E2.0. In E2.0 edge RMT 0
(first set) and RMT 1 (third set) are eligible. At the 3rd level, as per periodic
boundary condition we get only RMT 0 (first set) in the edge E3.0 which is
self merged. In Fig. 3, from root level to leaf level we have only one sequence
of RMTs that are self merged. So we get only one point state attractors in
the CA 〈204, 240, 48, 0〉.

Identification of Non-Uniform Periodic Boundary Cellular Automata
having only Point States 73

V PBCA having only point states

To identify only point state PBCA, first we count cyclic state(s), then it
compare the result with result of Algorithm 1 which gives number of point
state attractors. If number of cyclic states is more than point states, then
the CA contains multi length cycle attractor(s), otherwise it contains only
point states.

Using the concept of linkcount (discussed in Section III), in first and
second level all RMTs have linkcount 1. From third level to (n− 1)th level,
linkcount depends on number of predecessors or links at (i − 1)th level for
ith level. linkcount decrease by 1, if RMT is link to a non-reachable edge.
Find the existing non-reachable state and then find new non-reachable state
in the same level using linkcount and continuously using this process until
two consecutive count of non-reachable states are equal to leaf level of tree.
So, at the end of leaf level, we conclude that the number of cyclic states is
equal to number of reachable edge (node). Now, we present an algorithm to
calculate the number of cyclic states of CA. Input of the algorithm is CA
rule vector and output of the algorithm is number of cyclic states.

Algorithm 2 FindNoOfCyclicStateForPBCA
Input: 〈R1, · · · ,Ri, · · · ,Rn〉 (n-cell CA).
Output: number of cyclic states.
Step 1: Form the root and identify its left and right edges following R1).
For each RMT, set linkcount← 1.

(i) Form a link from the edge of an RMT to the edge which is the
stable position of the RMT.

(ii) If any RMT does not exist in an edge, the edge is marked as a
non-reachable edge.
Set oldcount← number of non-reachable edge ×2n−1

Step 2: Repeat Step 3 to Step 6 for i = 2 to n
Step 3: Get the edges of reachability tree for level (i− 1).

(i) Get the edges at level (i) using Ri.
(a) If level (i) equal to (n− 2) then,
We discard odd RMTs from first two set and discard even RMTs

from last two set.
(b) If level (i) equal to (n− 1) then,
In first group only RMTs 0 and 4 can reside. Whereas, in second

group, third group and fourth group only RMTs 1 and 5, RMTs 2 and 6, and
RMTs 3 and 7 can reside respectively.

(ii) If no RMT exists in an edge, the edge is marked as a non-reachable
edge.
Step 4: For each RMT (r) on each edge of level (i),

(i) identify number of RMTs (p) of level (i− 1) that derive r.
(ii) set linkcount (r) sum of linkcount (p).

74 N. Naskar, S. Adak, S. Das

Step 5: (i) Find stable position of the RMT (r) on an edge and make a link
from the current edge to the final edge.

(ii) If the stable position does not exist on the tree (non-reachable
edge), decrement linkcount (r) by 1.

(iii) If linkcount(r) = 0, then mark the RMT (r) as non-reachable
for its current edge position.

(iv) If each RMT of an edge is non-reachable mark that edge as non-
reachable edge.
Step 6: Set newcount← number of non-reachable edges ×2n−i.

If newcount 6= oldcount, then
(i) set oldcount = newcount.
(ii) Repeat Step 5 and Step 6.

Step 7: Report number of cyclic state ← (2n - oldcount).
Step 8: Calculate number of point attractors using the Algorithm 1.
Step 9: If number of cyclic state > number of point attractor

Report the CA is multi length cycle CA.
Otherwise, Report the CA is only single length cycle CA.

Performance Analysis: The performance of Algorithm 2 depends in which
level we encounter first non-reachable state and number of cyclic states. If
the cyclic states are exponential, time and space complexity become expo-
nential. However the multi attractor CA, which are targeted to application
like pattern classification , are having a limited number of attractors. For
such Algorithm 2 is excellent. Using tree merging technique further help
to develop a set of rules with specific arrangement technique by which we
design only point state PBCA in linear time complexity.

Since the cyclic states can only form the attractors, the number of at-
tractors are less than or equal to the number of of cyclic states (which is
the output of the Algorithm 2). If all the attractors are point states, then
the number of cyclic states is equal to the number of point states. Using
Algorithm 1, we can answer whether all attractors are of cycle length 1.

Example 2: Considering, the CA 〈204, 240, 48, 0〉 in Fig 4 the root level are
same as figure of reachability tree 2. At the 1st level, we discard RMT 2, 3
merged in E1.1 and RMT 4, 5 merged in E1.2 which are non-reachable edges.
In the 2nd level, we discard RMT 2,3 merged in E2.1 which is non-reachable.
In the 3rd level RMT 2, 3 and 7 are discarded as they merged to non-
reachable edge E3.1, E3.13 and E3.15 respectively. In the leaf level of Fig 4,
we can get only three node, so the result of applying the CA 〈204, 240, 48, 0〉
on Algorithm 2 is three cyclic states. In the CA 〈204, 240, 48, 0〉 the number
of cyclic state (using Algorithm 2) is more than point state (using Algorithm
1), so the CA contain multi length cycle attractor.

Identification of Non-Uniform Periodic Boundary Cellular Automata
having only Point States 75

4 6
0 21 3

5 7

1 3

 < 0 1, 2 3 , 4 5 , 6 7>

0 1 , __ , 4 5 , __ __ ,2 3 , ___ , 7 6

< __, 4 5 6 7, ___ , 4 5 6 7>< 0 1 2 3 , __ ,0 1 2 3 , ___>

(0) (1)
E E

(0)

N

NN

0. 0

1. 0

0. 0 0. 1

1. 1

E1. 0

(1)

___, ___,

 < 0 1, 2 3 , 4 5 , 6 7>

0 1 , __ , 4 5 , __ __ ,2 3 , ___ , 7 6

< __, 4 5 6 7, ___ , 4 5 6 7>< 0 1 2 3 , __ ,0 1 2 3 , ___>

(0) (1)
E E

(0)

N

NN

0. 0

1. 0

0. 0 0. 1

1. 1

E1. 0
2. 0N

 __, 6 7, ___ , 6 7

___ ,, 5 7

(1)

, ___ ,__, 1 30 2

___,

5___,0 , ___,__, 2

 0 1 , __ ,0 1 , ___

4 6___ ,

, ___,__, 1320 6,__, 7

0 ,__, 2 , ___ 4 6,__, ,__, 0 25 7 1 3

1,__,3___,

___,4,__, 5

 0 1 2 3 , __ ,0 1 2 3 , ___ __, 4 5 6 7, ___ , 4 5 6 7

7,__,

Figure 4: Tree merging for getting cyclic states (RMTs without any merging are
self merged)

VI Conclusion

Here we have covered some aspects of non-uniform periodic boundary CA
having only point states. To do this we take help of tree merging technique.
Using the concept of tree merging, an algorithm for identifying point states
attractors from CA state space is reported. Another algorithm is also re-
ported to count cyclic states in a CA state space. Using these two algorithm
we can identify a PBCA having only point states.

References

[1] P Pal Chaudhuri, D Roy Chowdhury, S Nandi, and S Chatterjee. Additive
Cellular Automata – Theory and Applications, volume 1. IEEE Computer
Society Press, USA, ISBN 0-8186-7717-1, 1997.

[2] Sukanta Das and Biplab K. Sikdar. Characterization of 1-d periodic
boundary reversible ca. Electr. Notes Theor. Comput. Sci., 252:205–227,
2009.

[3] Nazma Naskar, Avik Chakraborty, Pradipta Maji, and Sukanta Das.
Analysis of reachability tree for identification of cyclic and acyclic ca
states. In ACRI, pages 63–72, 2012.

[4] Nazma Naskar, Sukanta Das, and Biplab K. Sikdar. Characterization of
nonlinear cellular automata having only single length cycle attractors. J.
Cellular Automata, 7(5-6):431–453, 2012.

[5] Stephen Wolfram. Cellular Automata and Complexity, chapter 4, pages
159–202. Westview Press, 2002.

76

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 77

Complexity Analysis in Cyclic Tag System

Emulated by Rule 110

Shigeru Ninagawa
Kanazawa Institute of Technology, Ishikawa, Japan.

University of the West of England, Bristol, United Kingdom.
shigeruninagawa@gmail.com

Genaro J. Mart́ınez
Departamento de Ciencias e Ingenieŕıa de la Computación,

Escuela Superior de Cómputo, Instituto Politécnico Nacional, México, D. F.
University of the West of England, Bristol, United Kingdom.

genaro.martinez@uwe.ac.uk

August 17, 2013

Abstract

It is known that elementary cellular automaton rule 110 is capa-
ble of supporting universal computation by emulating cyclic tag sys-
tem. Since the whole information necessary to perform computation
is stored in the configuration, it is reasonable to investigate the com-
plexity of configuration for the analysis of computing process. In this
research we employed Lempel-Ziv complexity as a measure of com-
plexity and calculated it during the evolution of emulating cyclic tag
system by rule 110. As a result, we observed the stepwise decline of
complexity during the evolution. That is caused by the transformation
from table data to moving data and the elimination of table data by a
rejector.

1 Introduction

Cellular automaton (CA) is a model of information processing system. Since
CAs have no memory except for cell, all the information necessary to perform
computation is stored in its configuration. That means the complexity of
configuration is in some way related with the complexity of information the
CA is processing. Therefore it is reasonable to investigate the complexity of
configuration for the analysis of computing process by CA. Elementary CA
(ECA) rule 110 is supporting universal computation [1]. In this research
we focus on the complexity of configurations during the computing process
by rule 110. In the next section, we make a brief explanation of cyclic tag

78 S. Ninagawa, G. J. Mart́ınez

system emulated by rule 110. The results of complexity analysis of cyclic tag
system are shown in section 3. Finally we discuss the results and a future
plan.

2 Cyclic Tag System by Rule 110

The transition function of ECA rule 110 is given by:

111

0

110

1

101

1

100

0

011

1

010

1

001

1

000

0
.

The upper line represents the state of the neighborhood and the lower line
specifies the state of the cell at the next time step. Cook proved the compu-
tational universality of rule 110 by showing that rule 110 can emulate cyclic
tag systems [1].

A cyclic tag system works on a finite tape which is read from the front
and appended to based on what is read. An appendant is cyclically chosen
from the appendant table. The alphabet on the tape consists of {0, 1}. At
each step, the system reads one character and deletes it, and if that is ’1’,
then it appends the appendant, while an ’0’ causes the appendant to be
skipped. At the next step, the system moves on to the next appendant in
the table. The system halts if the word on the tape is empty. For example,
the transition of the initial word ’1’ with the appendant table (1, 101) is
given as following:

1 ⊢ 1 ⊢ 101 ⊢ 011 ⊢ 11 ⊢ 11 ⊢ 1101 ⊢ · · · .

A detailed explanation of the emulation of cyclic tag systems by rule 110 is
in Ref. [7].

3 Complexity Analysis

As a measure of complexity, we focus on the compressibility of configuration.
Compression-based CA classification was implemented by Zenil [2] using the
DEFLATE algorithm [3]. We use Lempel-Ziv (LZ) complexity used in the
data compression algorithm called LZ78 [4]. In LZ78, a string is divided
into phrases. Given a string s1s2 · · · sksk+1 · · · where a substring s1s2 · · · sk
has already been divided is constructed by searching the longest substring
sk+1 · · · sk+n = wj , (0 ≤ j ≤ m) and by setting wm+1 = wjsk+n+1 where
w0 = ǫ. The LZ complexity of the string is defined as the number of divided
phrases. The complexity analysis based on LZ78 was applied to the study
of the parity problem solving process by rule 60 [5].

In this research, we calculate the LZ complexity of configuration at each
time step during the computing process of cyclic tag system emulated by
rule 110. Figure 1 shows the evolution of LZ complexity staring from a

Complexity Analysis in Cyclic Tag System Emulated by Rule 110 79

]

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10000 20000 30000 40000 50000 60000 70000

LZ
 c

om
pl

ex
ity

time step

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10000 20000 30000 40000 50000 60000 70000

LZ
 c

om
pl

ex
ity

time step

Figure 1: Evolution of LZ complexity staring from a random configuration
(left) and from the one designed to emulate cyclic tag system (right).

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 0 10000 20000 30000 40000 50000 60000 70000

m
ov

in
g

av
g.

 o
f L

Z
 c

om
pl

ex
ity

time step

Figure 2: Moving average of LZ complexity in the evolution of cyclic tag
system.

random configuration (left) and from the one designed to emulate cyclic tag
system. The array size is 65900 in both cases. We made use of the initial
configuration on the web site [6] from which you can download the file of
initial configuration of rule 110 emulating the cyclic tag system exemplified
in the previous section.

In the case of a random initial configuration, the LZ complexity starts
with the value of 6068 and decreases quickly, meanwhile, it shows a more
slighter decrease in the case of cyclic tag system emulation. To investigate
the evolution of LZ complexity in the process of cyclic tag system emulation,
we calculated the simple moving average of the data with period 100 and
showed with a finer scale in Fig. 3. We can see the repetition of signifi-
cant decline and temporary equilibrium in the evolution of LZ complexity.
Figure 3, however, does not inform us about the regional difference of LZ
complexity, because LZ complexity is a measure of complexity from a global

80 S. Ninagawa, G. J. Mart́ınez

perspective. So we divide the array into 20 sections (section 0 ∼ 19 starting
from the left) of 3295 cells and calculate the LZ complexity of each section
individually. Figure 3 shows the evolution of the LZ complexity in section
2 ∼ 17.

By viewing the figures from section 2 to 11 in sequence, we can observe
four bumps are moving from the left to the right. Each bump corresponds to
the four packages of A4 gliders that construct an appendant from a moving
data. Those packages of A4 gliders are called ossifier (4 A4). The term in
the parenthesis is the one according to the naming convention employed in
Ref [7].

The initial configuration in section 16 contains several patterns such as
tape data, table data or leader that separates packages of table data (Fig. 4).
The group of these complicated structures makes the complexity high in this
section. As time goes by, however, these patterns move to the left and there
remains the periodic background called ether that causes the low value of
complexity.

For the detailed analysis of section 14, we divide it into three parts of
array size 1100 and calculated the moving average (period:100) of LZ com-
plexity for each part during time step from t = 10, 000 to t = 50, 000 as
shown in Fig. 5. The explanation in this paragraph is shown diagrammat-
ically in Fig. 6. The right of Fig. 5 shows LZ complexity in the part of
x = 48, 200 ∼ 49, 299 (the index of the leftmost cell of the array is given by
x = 0). As a moving data ’0’ (0Add E) is coming from the right, the LZ
complexity starts increasing from t = 20, 000. While the collision between
the moving data ’0’ and an ossifier creates a tape data ’0’ (0Ele C2) from
t = 22, 000 to t = 24, 000 , the LZ complexity does not vary a lot because
tape data do not move. The LZ complexity increases from t = 25, 000 as
a leader and three table data come from the left. When the leader collides
with a tape data ’0’ at about t = 27, 000, the LZ complexity reaches a maxi-
mum. While a rejector created by the collision is erasing table data as show
in the left of Fig. 7, the LZ complexity decreases a lot from t = 28, 000 to
t = 32, 000.

When the moving data ’1’ created in section 15 pass through the part
of x = 47, 100 ∼ 48, 199 to the left, the LZ complexity temporarily increase
from t = 25, 000 to 33, 000 as shown in the middle of Fig. 5. Finally the
moving data ’1’ collides with an ossifier coming from the left and converts
into tape data ’1’ as shown in the right of Fig. 5. That corresponds to the
bump at t = 28, 000 ∼ 37, 000 in the part of x = 46, 000 ∼ 47, 099 shown
in the left of Fig. 5. The sharp increase from t = 32, 000 in the right of
Fig. 5 is caused by leaders and table data moving from the right. These
structures bring a same result from t = 35, 000 in the middle of Fig. 5 and
from t = 39, 000 in the left of Fig. 5, as they move to the left. They collide
with tape data ’1’ and convert into a moving data ’1’ that goes away to the
left. That causes the sharp decrease from t = 43, 000 to t = 47, 000 in the

Complexity Analysis in Cyclic Tag System Emulated by Rule 110 81

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 2

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 3

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 4

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 5

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 6

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 7

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 8

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 9

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 10

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 11

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 12

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 13

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 14

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 15

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 16

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000 60000 70000

section 17

Figure 3: Evolution of LZ complexity in section 2 - 17. Vertical axis is LZ
complexity and horizontal axis is time step.

82 S. Ninagawa, G. J. Mart́ınez

Figure 4: Space-time pattern of the leftmost part of section 16 in Fig.3 for
the first 200 steps. Array size is 500. Starting from the left, there are the
rightmost part of tape data ’1’ (1Ele C2), leader (SepInit EE), and the left
part of table data ’1’ (1BloP E).

 140

 145

 150

 155

 160

 165

 170

 10000 20000 30000 40000 50000

x=46000-47099

 140

 145

 150

 155

 160

 165

 170

 10000 20000 30000 40000 50000

x=47100-48199

 140

 145

 150

 155

 160

 165

 170

 10000 20000 30000 40000 50000

x=48200-49299

Figure 5: Moving average of the LZ complexity in the three parts of the
section 14 in Fig.3 during time step from t = 10, 000 to t = 50, 000.

left of Fig. 5. Since there remains only ether after t = 47, 000, the value of
LZ complexity is low.

4 Discussion

As we explained in the previous section, by dividing the whole array into
small parts, we can correspond the change of LZ complexity to the events
occurring on the array such as incoming of propagating patterns, collision
between several patterns, and outgoing of them. In particular the significant
decline of LZ complexity is caused by a transformation from table data to
moving data or an elimination of table data. Figure 8 shows the space-time
pattern of table data ’1’ (1BloP E) (top) and moving data ’1’ (1Add E)
(bottom). It is apparent that the pattern of table data ’1’ is more compli-
cated than that of moving data ’1’. Therefore the transformation from table
data to moving data brings about the decline of LZ complexity. And the

Complexity Analysis in Cyclic Tag System Emulated by Rule 110 83

Figure 6: Diagram of patterns in section 14 in Fig.3. Time goes from top
to bottom.

Figure 7: Space-time pattern of the part of section 14 in Fig.3. Left: A
rejector is erasing table data. Right: Collision between an ossifier moving
from the left and moving data from the right is constructing a table data.
Both pictures show 400 steps of evolution of the area of 250 cells.

84 S. Ninagawa, G. J. Mart́ınez

Figure 8: Space-time pattern of table data ’1’ (top) and moving data ’1’
(bottom). The array size is 490 in both cases.

elimination of table data by a rejector has the same result. It seems that
the decline of LZ complexity observed in Fig. 3 is caused by the events of
either of these two types.

In this research we employed the periodic boundary conditions. The
ossifiers, the table data, and the leaders are built in advance in the initial
configuration. They are consumed during the evolution and are not supplied
from the outside. It is uncertain about how LZ complexity varies in time
if they are supplied regularly and eternally. We are planning to employ
”discharging” boundary conditions that can supply these patterns from the
outside.

References

[1] Cook, M.: Universality in elementary cellular automata. Complex Sys-
tems 15, 1–40 (2004)

[2] Zenil, H.: Compression-based investigation of the dynamical proper-
ties of cellular automata and other systems. Complex Systems 19, 1–28
(2010)

[3] Deutsch, L. P.: DEFLATE compressed data format specification version
1.3. (May 1996) http://www.rfc-editor.org/rfc/rfc1951.txt

Complexity Analysis in Cyclic Tag System Emulated by Rule 110 85

[4] Ziv, J., and Lempel, A.: Compression of individual sequences via
variable-rate coding IEEE Transactions on Information Theory 24, 530–
536 (1978).

[5] Ninagawa, S.: Solving the parity problem with rule 60 in array size of
the power of two. J. Cellular Automata in press

[6] Mart́ınez, G. J.: Elementary cellular automaton rule 110
http://uncomp.uwe.ac.uk/genaro/Rule110.html

[7] Mart́ınez, G. J., McIntosh, H. V., Seck-Tuoh-Mora, J. C., Vergara, S. V.
C.: Reproducing the cyclic tag system developed by Mattew Cook with
rule 110 using the phase fi 1. J. Cellular Automata 6, 121–161 (2011)

86

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 87

Experimental study on convergence time of

elementary cellular automata under asynchronous

update ∗

Biswanath Sethi, Souvik Roy, Sukanta Das
Department of Information Technology

Bengal Engineering & Science University, Shibpur

Howrah, West Bengal, India–711103

E-mails: sethi.biswanath@gmail.com, svkr89@gmail.com,

sukanta@it.becs.ac.in

Abstract

This paper investigates the convergence of elementary cellular au-
tomata (ECA) under fully asynchronous update. There are 146 ECA
rules which converge to some fixed-point attractors. We have experi-
mentally studied the convergence time of such ECA. For this experi-
mental study, we have followed hybrid iterative refinement method of
the empirical curve bounding technique. It is found that there are rules
with six classes of convergence time, and these are O(1), O(log(log n)),
O(log n), O(n1/2), O(n2) and O(2n), where n is the number of cells in
the ECA.

Keywords: Elementary cellular automata, asynchronous cellular automata
(ACA), fixed-point, convergence time, empirical curve bounding technique.

I Introduction

This work concentrates only on the elementary cellular automata (ECA).
Here, we explore a set of ECA states, called fixed-point attractors, towards
which the neighboring states asymptotically approach in the course of dy-
namic evolution. We experimentally study the rate of growth of convergence
time of these ECA under asynchronous update. As per our knowledge very
few target have been fixed in this direction.

The study of convergence property of ECA under asynchronous update
has been initiated in [1, 2, 4]. However, most of the works on convergence

∗This work is supported by DST Fast Track Project Fund (No. SR/FTP/ETA-
0071/2011)

88 B. Sethi, S. Roy, S. Das

Table 1: Look-up table for rule 64, 88 and 251
Present state : 111 110 101 100 011 010 001 000 Rule

(RMT) (7) (6) (5) (4) (3) (2) (1) (0)
(i) Next state : 0 1 0 0 0 0 0 0 64
(ii) Next state : 0 1 0 1 1 0 0 0 88
(iii) Next state : 1 1 1 1 1 0 1 1 251

have concentrated on two-dimensional ACA. A probabilistic study on the
convergence and their convergence time of ECA under asynchronous update
is provided in [3]. However, the work has dealt with only a set of CA (64
out of 256 ECA).

In this scenario, this paper targets to extensively study the convergence
property and convergence time of ECA under asynchronous update. We
study the rate of growth of convergence time with respect to the size of
automaton. The work concentrates on all the 256 ECA rules. Like [3, 5],
we have also considered that in each discrete time step, only one arbitrary
cell is updated. Hereafter, by ACA we shall refer ECA under asynchronous
update (that is, one arbitrary cell is updated in a single step). We have
designed one theorem for the characterization of ACA. From the theorem
we identify 146 ACA (out of 256 ACA) rules that converge to some fixed-
point attractors during their dynamic evolution. For the experimental study
of convergence time, we have used the empirical curve bounding method
and guess the rate of growth of convergence time of the characterized ACA
[6]. An algorithm is designed to setup the environment for experimentation
and find the average convergence time of the characterized ACA. We have
identified six different convergence time with respect to the size of ACA and
these are O(1), O(log(log n)), O(logn), O(n1/2), O(n2) and O(2n) where, n
is the number of cells of ACA. ACA (146 ACA) with their convergence time
are listed in Table 2.

II Definitions

The one-dimensional two state 3-neighborhood cellular automata are com-
monly known as elementary cellular automata (ECA) [10]. In asynchronous
update, the cells are considered as independent and so, updated indepen-
dently. We have considered here that a single arbitrary cell is updated in
each time step. Such CA are referred as fully asynchronous CA in [3]. Three
such rules (64, 88 and 251) are shown in Table 1. We referred, each column
of the first row of Table 1 as Rule Min Term (RMT).

Asynchronous update of ECA is studied in [5, 8]. We denote the cell,
updated at time t as ut. Therefore, we can get an update pattern, U =
〈u1, u2, · · · , ut, · · · 〉 which notes the cells, updated in different time [7]. With

Experimental study on convergence time of elementary cellular automata
under asynchronous update 89

0001

0110

0100

3

4

3

1

2

3

4123
100110000100

0011

0000

00101000

1010

1/2/3/4

Figure 1: Partial state transition diagram of 4 cells rule 64 ACA.

the update pattern, initial state and the ACA rule, one can determine the
state transition for the ACA (Figure 1). The cells updated during state
transition are noted over arrows.

Definition 1 An RMT r of a rule R is active if an ACA cell flips its state
(1 to 0 or 0 to 1) on r. Otherwise, the RMT r is passive.

For example, RMT 0 of rule 251 (see Table 1) is active. Because, while
a cell is acting on that particular RMT, the cell’s present state is 0 and next
state of the cell for the rule is 1. Hence, transition occurs. So, it can be said
that if the middle bit of an RMT is unequal with the RMT value, the RMT
is active. RMT 3 of rule 251, on the other hand, is passive.

Definition 2 A fixed-point attractor is an ACA state, next state of which
is the state itself for any style of update of cells. That is, if an ACA reaches
to a fixed-point attractor, the ACA remains in the state forever.

In Figure 1, the state 0000 is a fixed-point attractor for rule 64 ACA.
The RMT sequence for the state 0000 is 〈0000〉. The next state of 0000
is always 0000 for the update of any cell in any sequence. The RMT 0 is
passive for rule 64. It can be observed that the RMTs in an RMT sequence
of the state of a fixed-point attractor are to be passive. Hence, we get the
following lemma.

Lemma 1 Rule R ACA forms a fixed-point attractor with state S if the
RMTs of R that are present in the RMT sequence of S are passive.

III Identification of convergent ACA rules

Following theorem states the condition of ECA that converges to some fixed-
point attractors under asynchronous update. Due to page constrain, the
proof of the theorem is omitted.

Theorem 1 Rule R ACA converges to fixed-point attractor for at least one
update pattern if one of the following condition is verified [9]:
(i) RMT 0 (RMT 7) of R is passive and RMT 2 (RMT 5) is active.
(ii) RMTs 0, 1, 2 and 4 (RMTs 3, 5, 6 and 7) are passive and RMT 3 or
6 (RMT 1 or 4) is active.
(iii) RMTs 1, 2, 4 and 5 (RMTs 2, 3, 5 and 6) are passive.

90 B. Sethi, S. Roy, S. Das

Table 2: Convergence time of ACA
Rate of ACA
growth

O(1) 204

O(log(log n)) 0, 4, 5, 8, 12, 13, 32, 64, 68, 69, 72, 76, 77, 79,
93, 94, 128, 132, 133, 160, 164, 200, 205, 207, 218, 221,

222, 223, 232, 235, 236, 237, 239, 250, 251,
253, 254, 255

O(log n) 2, 10, 16, 18, 24, 34, 36, 42, 40, 44, 48, 50, 56, 66,
78, 80, 92, 95, 96, 98, 100, 104, 112, 130, 136,
140, 141, 144, 162, 168, 171, 172, 175, 176, 179,
183, 185, 186, 187, 189, 190, 191, 192, 196, 197,
202, 203, 206, 216, 217, 219, 220, 224, 227, 228,
234, 238, 231, 233, 241, 242, 243, 245, 246, 247,

248, 249, 252

O(n1/2) 26, 58, 74, 82, 88, 106, 114, 120,163, 167, 169, 173,
177, 181, 225, 229

O(n2) 138, 146, 152, 170, 174, 178, 182, 184, 188, 194, 208,
226, 240, 244, 230

O(2n) 90, 122, 154, 161, 165, 166, 180, 210

Example 1 Let us consider the rule 36 ACA, in which RMTs 0, 1, 2 and
4 are passive. Therefore, the rule satisfies the condition for fixed-point
attractor for at least one update pattern (Theorem 1 (ii)). Here, we as-
sume number of cells is 4 and the initial state is 1111. Since the cells are
updated arbitrary, we may get the update pattern 〈1, 4, 4, 2, · · · 〉. In this
case the ACA reaches to a fixed-point attractor. The detail transitions are:
1111(1)→ 0111(4)→ 0110(4)→ 0110(2)→ 0010 (the cell updated in a step
is noted in bracket).

There are 64 rules where the RMT 0 is passive and RMT 2 is active
and 64 rules where RMT 7 is passive and RMT 5 is active (Theorem 1(i)).
Similarly, identifying this way theorem 1 dictates that there are 146 ACA out
of 256 (see second column of Table 2), which converge to some fixed-point
attractors during their dynamic evolution.

III.1 Finding average convergence time

The ultimate goal of calculating the average convergence time of ACA, would
be to find the closed form expressions for the run time in terms of input
CA size. Since this is so complicated, we have estimated the average con-
vergence time (asymptotic performance) depending upon small number of
inputs which are usually represented in big-oh notation [6].

Experimental study on convergence time of elementary cellular automata
under asynchronous update 91

To calculate the average convergence time for an ACA, the convergence
time for all possible states are considered. There are 2n possible states for an

n-cell ACA. So, average convergence time can be, X2n =
∑2n

i=1 Xi

2n , whereXi is
the convergence time for ith initial state. For large size of ACA, it is difficult
to calculate the average convergence time, considering all the possible states.
So, we choose m states out of total 2n possible states randomly. Hence, the

estimated average convergence time is, X̂1=
∑m

i=1 Xi

m , where m is the number
of samples and Xi is the convergence time of ith random initial state. Here,

X2n and X̂1 may not be close as we have taken only m states out of 2n

states, and generally m≪ 2n.
To get better estimation, we take again m samples randomly from total

state space and calculate the average convergence time, considering total

2m states. Hence, X̂2=
1
2 (X̂1+

1
m

∑m
i=1Xi). Similarly, we can get X̂3,

X̂4,· · · ,X̂k, where,

X̂k =
k − 1

k
(X̂k−1 +

1

m

m∑

i=1

Xi) (1)

This is obvious that the series X̂1, X̂2, · · · , X̂k, · · · converges to X̂2n . How-

ever, we declare that X̂k is the estimated convergence time, if |X̂k–X̂k−1| <
δ, where δ is a very small number. To find the estimated convergence time,
we have experimented all 146 ACA considering the value of δ as 0.0001.
We designed an algorithm, reported next, to find the estimated convergence
time.

Algorithm 1 : Convergence time
Input: n (Size of ACA), Rule R ACA from Table 2, m
Output: Average convergence time
Step 1: Initialize: Time ←− 0
Step 2: Generate an n-bit binary string randomly and consider it as the
initial ACA state
Step 3: Select an ACA cell randomly, and update that cell
Step 4: Repeat step 3 for m times
Step 5: Time ←− Time+1
Step 6: If the ACA state is not a fixed-point, go to Step 3
Step 7: Repeat Step 2 to Step 6 for m times
Step 8: avg time ←− (time/m)
Step 9: Repeat Step 1 to Step 8 to get a new average time, Newavg time
Step 10: If |avg time−Newavg time| is less than some given threshold re-
port avg time as the output.
Step 11: avg time ←− avg time+Newavg time

2
Step 12: go to Step 9

92 B. Sethi, S. Roy, S. Das

III.2 Method of finding rate of growth

It explains the method which we use to find the rate of growth of conver-
gence time of ACA, using the results obtained from Algorithm 1. To find
the rate of growth of convergence time of ACA, we have followed the empir-
ical curve bounding technique [6]. Assuming the execution time (t) follows
power rule, that is, t ≈ kna, the coefficient a can be found by taking em-
pirical measurements of run time {t1, t2} at some input size {n1, n2}, and
calculating t2/t1=(n2/n1)

a. So,

a =
log(t2/t1)

log(n2/n1)
(2)

We experimented all 146 ACA, using the Algorithm-1 several times varying
the size of ACA. A series of average convergence time are obtained from
the algorithm for a particular rule. We find a series of co-efficient (a) using
equation 2 considering two consecutive average convergence time resulted
from Algorithm 1. From these several values of a, we find the rate of growth
convergence time of ACA applying the hybrid iterative refinement method
of the empirical curve bounding technique [6]. From the experimentation,
we also observed that after a certain CA size the growth rate of convergence
time always lies under some upper bound . As per the definition of big-oh
(O) notation, for a given function g(n), T(n)=O(g(n)), there exist positive
constant c and n0, such that 0≤ T(n)≤ c g(n), for all n≥ n0. As the
average convergence time of the ACA satisfies the definition of big-oh, so we
represent the rate of growth of convergence time of ACA in big-oh notation.
Finally, to validate our guess for convergence time, we also plot the graph
for rate of growth with respect to ACA size for each class of convergence
time.

IV Experimental results

Here, we discuss about various experimental results and classes of conver-
gence time of ACA. The co-efficient a (rate of growth) is calculated using the
equation 2, considering two consecutive average convergence time resulted
from the experimentation (Algorithm 1). The rate of growth of convergence
time of ACA, remain constant after a certain ACA size.

The average convergence time for rule 204 ACA is constant as all the
RMTs for rule 204 ACA are passive. Hence, the convergence time for rule
204 ACA is O(1). The rest 145 ACA rules are categorized in 5 classes based
on their upper bound of convergence time. All 146 ACA are listed with their
rate of growth of convergence time in Table 2.

Experimental study on convergence time of elementary cellular automata
under asynchronous update 93

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10

12

Number of cells

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e

T(n)
c.log(log(n))

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

Number of cells

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e

T(n)
c.log(n)

(a) (b)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Number of cells

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e

T(n)

c.(n1/2)

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of cells

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e

T(n)

c.(n2)

(c) (d)

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

18
x 10

4

Number of cells

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e

T(n)

c.(2n)

(e)

Figure 2: Rate of growth of ACA (a) for rule 76 (b) for rule 78 (c) for rule
169 (d)for rule 240 (e) for rule 90

94 B. Sethi, S. Roy, S. Das

IV.1 Time: O(log(log n))

There are 38 rules whose convergence time is O(log(log n)). We calculate
the rate of growth of convergence time taking samples from the experimen-
tation. We have calculated the rate of growth (value of a) using equation 2
considering two consecutive average convergence time obtained from the Al-
gorithm 1 and plot the graph of rate of growth of convergence time. Figure
2(a) shows the rate of growth of convergence time for rule 76 ACA.

Example 2 Consider the rule 76 ACA. The rate of growth of convergence
time for this rule satisfies the condition for big-oh. Hence, we can apply
T(n)≤ c(log(log n)), for c=3 and n≥ 40, where T(n) is rate of growth of
convergence time. So, we can represent the rate of growth of convergence as
O(log(log n)) (see Figure 2(a)).

IV.2 Time: O(log n), O(n1/2), O(n2) and O(2n)

68, 16, 15 and 8 rules are identified with O(logn), O(n1/2), O(n2) and O(2n)
convergence time respectively (Table 2). The average convergence time is
calculated considering the samples resulted from the experimentation using
the empirical curve bounding method [6]. Figure 2(b), 2(c), 2(d), 2(e) shows
the rate of growth of convergence time for rule 78 ACA of class O(logn),
rule 169 of class O(n1/2), rule 240 of class O(n2) and rule 90 of class O(2n)
respectively.

V Discussion

This paper has reported an experimental study on convergence time of el-
ementary cellular under asynchronous update. For this study we have de-
signed one theorem which characterizes the ACA, converges to some fixed-
point attractor during their dynamic evolution. 146 ACA are identified,
which are converged to some fixed-point attractors. For the experimental
study of convergence time of ACA, we have followed the empirical curve
bounding method. For the experimental setup we have designed an algo-
rithm to find the average convergence time and the rate of growth of con-
vergence time have found using the hybrid iterative refinement technique of
empirical curve bounding method. We have identified six different classes of
convergence time and that are O(1), O(log(log n)), O(logn), O(n1/2), O(n2)
and O(2n), where n is the number of cells in the ACA.

References

[1] H. Bersini and V. Detour. Asynchrony induces stability in cellular
automata based models. In R. A. Brooks and P. Maes, editors, Artificial

Experimental study on convergence time of elementary cellular automata
under asynchronous update 95

Life IV, pages 382–387, Cambridge, Massachusetts, 1994. The MIT
Press.

[2] Nazim Fatès and Lucas Gerin. Examples of fast and slow convergence of
2d asynchronous cellular systems. J. Cellular Automata, 4(4):323–337,
2009.

[3] Nazim Fatès, Eric Thierry, Michel Morvan, and Nicolas Schabanel.
Fully asynchronous behavior of double-quiescent elementary cellular au-
tomata. Theor. Comput. Sci., 362(1-3):1–16, 2006.

[4] Jörg Hoffmann, Nazim Fatès, and Héctor Palacios. Brothers in arms?
on ai planning and cellular automata. In ECAI, pages 223–228, 2010.

[5] T. Ingerson and R. Buvel. Structure in asynchronous cellular automata.
Physica D: Nonlinear Phenomena, 10(1-2):59–68, 1984.

[6] Catherine McGeoch, Peter Sanders, Ruldolf Fleischer, Paul R.Cohen,
and Doina Precup. Using finite experiments to study asymptotic per-
formance. Experimental Algorithmics, LNCS, (2547):93–126, 2002.

[7] Anindita Sarkar, Anindita Mukherjee, and Sukanta Das. Reversibil-
ity in asynchronous cellular automata. Complex Systems, 21(1):71–84,
June 2012.

[8] B. Schonfisch and A. De Roos. Synchronous and Asynchronous updat-
ing in Cellular Automata. Biosystems, 51:123–143, 1999.

[9] Biswanath Sethi and Sukanta Das. Modeling of asynchronous cellular
automata with fixed-point attractors for pattern classification. In Inter-
national Conference on High Performance Computing and Simulation,
July 2013.

[10] S. Wolfram. Theory and applications of cellular automata. World Sci-
entific, Singapore, 1986. ISBN 9971-50-124-4 pbk.

96

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 97

Linear acceleration for one-dimensional cellular

automata

Véronique Terrier

GREYC - UMR 6072
Université de Caen Basse-Normandie

Campus Côte de Nacre, 14 032 CAEN cedex 5, France

Abstract

This paper is an attempt to characterize linear acceleration algo-
rithms in one-dimensional cellular automata. Different solutions have
been presented in the literature based on geometric transformations of
the space-time diagram. We will emphasize their common character-
istics and will try to make explicit their generic design.

1 Introduction

Cellular automata are known as a relevant model for massively parallel com-
putation. Various algorithms illustrate their ability to do fast computation
([3, 2]). Here we focus on the classical question of linear acceleration and
investigate simulations which achieve speed up.

2 Definitions

In the sequel we only consider one-dimensional cellular automata with two-
way communication.

2.1 One dimensional CA

Formally, a cellular automaton is a one-dimensional array of finite automata
(the cells) indexed by Z. The cells evolve synchronously at discrete time step.
Each cell takes on value from a finite set of states S and communicates to its
left and right neighbors. At each step, each cell changes its state according
to its own state, the states of its left and right neighbors and to a transition
function δ : S3 → S. A site (c, t) denotes the cell c at time t and 〈c, t〉
denotes its state. For time t ≥ 0, 〈c, t + 1〉 = δ (〈c− 1, t〉, 〈c, t〉, 〈c+ 1, t〉).
The alphabet of the input words is a subset of S: the input set Σ. The input
mode is parallel; at initial time 0, the i-th bit of the input word w ∈ Σ∗

98 V. Terrier

w0 w1 w2 w3]]

Time

0
output cell

n-1

Figure 1: The space time diagram of a CA with parallel input mode and
two-way communication

is fed to the cell i: 〈i, 0〉 = wi. The computation is space bounded: all
other cells remain in a persistent state] during all the computation. A
configuration is the sequence of cell states at a given time. The evolution
of a cellular automaton starting from a given input is represented by a
space-time diagram where the rows correspond to the configurations at the
successive time steps.

2.2 Language recognition

To specify language recognition, we distinguish a subset of S: the set of
accepting states Saccept. A CA accepts a word w, if, on input w, the dis-
tinguished cell 0 enters an accepting state at some time t. A CA recognizes
a language L in time f , if it accepts every word w ∈ L of length n = |w|
at time t ≤ f(n). Among these time complexities, the real time function
corresponds to f(n) = n; it is the minimal time for the distinguished cell 0
to read the whole input and to know that the input is completed. We denote
by CA(f) the class of languages recognized in time f by some CA.

2.3 Linear acceleration

Here we focus on linear acceleration algorithms which transform an initial
CA recognizer A in a CA recognizer B working k time faster, where k > 1
is any rational. Precisely, it corresponds to an acceleration by a constant
factor of the complexity time beyond real time: once the output cell gets
the whole input, it proceeds faster. See Figure 2. The linear acceleration
theorem has been first established by Beyer [1].

Theorem 1 (linear acceleration). Let f be a function from N to N. If a
language L is recognized in time n+f(n), then for any positive ratio r ∈ Q,
L is recognized in time n+ dr f(n)e.

Linear acceleration for one-dimensional cellular automata 99

0

n

n+ f(n)

]]

n
The initial CA A

0

n

n+ f(n)/k

]]

n
The accelerated CA B

Figure 2: Linear acceleration

2.4 Affine transformation

Simulations between CA make widely use of affine transformations of the
working area. Formally, an affine transformation Π of the space-time dia-
gram is specified by three ingredients: a square matrix T , an origin C and
a set of sites X . It maps every site Q into Π(Q) defined as follows:

Π(Q) =

{
C + T × (Q− C) if Q ∈ X
Q otherwise

See Figure 3 for examples. With T1 =

(
f 0

1− f 1

)
(where f is 1/2) and

C = (0, n) (where n is the input length), the first transformation applies on

the set of sites {(c, t) : t > 0}. With T2 =

(
1 0

f − 1 f

)
and C = (0, n), the

second transformation applies on the set of sites {(c, t) : c+ t ≥ n}.
Note that we actually introduce rational coordinates. To revert then to a
discrete space-time diagram will require to group and to keep some redun-
dant information in each integer site.

3 Examples of linear acceleration algorithms

We recall the known acceleration algorithms and explicit their common char-
acteristics.

3.1 Beyer algorithm

The first linear acceleration algorithm was presented by Beyer in his PhD
thesis [1]. See Figure 3. It is the composition of two complementary com-

pressions with u = (0, 1) and v = (1,−1). The first compression

(
f 0

1− f 1

)

100 V. Terrier

f 0

1 − f 1

1 0

f − 1 f

Figure 3: Beyer acceleration

applies on all sites; the second one

(
1 0

f − 1 f

)
applies on the sites up to the

segment [(0, n) · · · (n− 1, 1)].

3.2 Algorithm with Firing Squad

Mazoyer and Reimen proposed the solution depicted in Figure 4 which
makes use of a Firing Squad [5]. It is the composition of two complemen-
tary compressions with u = (−1, 1) and v = (1, 0). The first compression(
f −1 + f
0 1

)
applies on the sites up to the segment [(0, n) · · · (n− 1, 1)]; the

second one

(
1 1− f
0 f

)
applies from time n, making use of the Firing Squad

to delimitate the horizontal segment.

3.3 Another variant

Another variant without synchronization was proposed by Heen [4]. See
Figure 5. It is the composition of two complementary compressions with

u = (−1, 1) and v = (1, 1). The first compression

(
(f + 1)/2 (f − 1)/2
(f − 1)/2 (f + 1)/2

)

applies on the sites up to the segment [(0, n) · · · (n − 1, 1)]; the second one(
(f + 1)/2 (−f + 1)/2

(−f + 1)/2 (f + 1)/2

)
applies on the sites up to the segment [(0, n) · · ·

(n− 1, 2n− 1)].

Linear acceleration for one-dimensional cellular automata 101

f −1 + f

0 1

1 1 − f

0 f

a firing squad
with two generals

Figure 4: variant with a Firing Squad (Mazoyer & Reimen)

Figure 5: another variant (Heen)

102 V. Terrier

4 Common characteristics

We review some common characteristics shared by these speed-up algo-
rithms.

4.1 Contraction

First every speed-up algorithm is the result of the composition of two com-
plementary contractions.

Two axes specified by two vectors u and v with u = (x, 1), v = (1, y) and
x y 6= 1

the eigenvectors basis P =

(
x 1
1 y

)

Two eigenvalues f1, f2 with f1, f2 > 0 and the compression rate f1f2 < 1

the diagonal contraction D =

(
f1 0
0 f2

)

A contraction is the transformation T = P ×D × P−1 such that T (u) =
f1u et T (v) = f2v

its complementary contraction is Tc = P ×
(
f2 0
0 f1

)
× P−1, Tc ◦ T =

T ◦ Tc = f1f2 Id

uv
f1uf2v

Observe that not all contractions are achievable on a CA. Indeed the
data move is subjected to the neighborhood constraints. The contraction
applied on the space-time diagram must preserve the neighborhood rules.
As the initial CA and the contracted CA share the same neighborhood, the
image of the neighborhood must satisfy the neighborhood constraint itself.
It means that the image of the neighborhood extremities e1 = (−1, 1) and
e2 = (1, 1) are contained in the neighborhood cone {αe1 + βe2 : α, β ≥ 0}.

Notably, one can’t contract more the time than the space:

Linear acceleration for one-dimensional cellular automata 103

Fact 1. The contractions compatible with the nearest neighborhood are
such that f1 ≥ f2 and the eigenvectors u = (x, 1), v = (1, y) associated
respectively to f1 et f2 verify |x|, |y| <= 1.

Proof. The linear contraction T is represented by the matrix(
(f1 xy − f2)/(xy − 1) −(f1 − f2)x/(xy − 1)
(f1 − f2) y/(xy − 1) (f2 xy − f1)/(xy − 1)

)
. The images of the neighbor-

hood vectors e1 and e2 are T (e1) = a e1 + b e2 and T (e2) = c e1 + d e2,
with a = 1/2 (f1 x y + f2 x y + f1 x− f1 y − f2 x+ f2 y − f1 − f2)/(x y − 1),
b = −1/2 (y + 1) (x + 1) (f1 − f2)/(x y − 1), c = −1/2 (y − 1) (x − 1) (f1 −
f2)/(x y−1), d = (f1 x y+f2 x y−f1 x+f1 y+f2 x−f2 y−f1−f2)/(x y−1)
non negative values. From the condition b, c ≥ 0, we get either f1 ≥ f2 and
|x|, |y| ≤ 1 or f1 ≤ f2 and |x|, |y| ≥ 1. For the second case, f1 ≤ f2 and
|x|, |y| ≥ 1, to set v′ = (1, 1/x) and u′ = (1/y, 1) brings back to the first
case.

We may verify that the images of e1 = (−1, 1) and e2 = (1, 1), by each
first contraction involved in the three acceleration examples, are indeed in
the neighborhood cone. But the complementary contraction is not necessar-
ily compatible with the neighborhood, as the complementary one in Beyer
algorithm (Tc(e2) = (1, 2f − 1) lies outside of the cone). It is only the
composition of the two contractions which is achievable.

4.2 Compression

The contractions involved in the three acceleration examples are specific.
They are unidirectional: the deformation applies only along one axis, the
second one remains stable.

A compression is a contraction with one of the eigenvalues equals to 1.

The eigenvalues {f1, f2} = {1, f} where f is the compression rate.

The acceleration examples are the results of two complementary compres-
sions:

• T1 = P ×
(

1 0
0 f

)
× P−1 where the sites on a line C1 + αu remain

stable

• T2 = P ×
(
f 0
0 1

)
× P−1 where the sites on a line C2 + βv remain

stable

Let C be the intersection of the lines C1 + αu et C2 + βv. It specifies the
center of the affine compressions.

Now we wonder if other accelerations than the three examples could be im-
plemented as the result of two compressions.

104 V. Terrier

First, notice that C = (0, n) with n the input length, since the two compres-
sions composition maps the sites (0, n+ t) to (0, n+ ft) by definition. Next,
we must take into account the input constraint. Indeed, the way the input
word is supplied in parallel to the initial CA remains identical to the com-
pressed CA. This consequently implies access constraints in the compressed
CA. It depends also whether the compression apply on all sites (as the first
compression in Beyer algorithm) or not (as the first compression in the two
other examples).

4.2.1 Case 1. The compression applies on all sites

In this case, the only compression compatible with the input constraint is
the first compression involved in Beyer algorithm:

Fact 2. Let P = (i, j) be any site with 0 < i, j and i + j < n. The only
one compression which both applies to P and is compatible with the input
constraint, remains stable on the axis u = (0, 1) and compresses along the
axis v = (1,−1).

Proof. Below the line i + j = n, any site P = (i, j) has no information
on the input length n. Equally, its image under the compression imP =
C + T1 × (P −C) =

(
(f − 1) (j − n)x/(xy− 1) + (xy− f) i/(xy− 1),−(f −

1) i y/(xy−1)+(f xy−1) (j−n)/(xy−1)+n
)

is independent from n. That
means that −(f − 1)x/(xy − 1) and −(f − 1)xy/(xy − 1) are equal to 0;
this leads to x = 0.
Furthermore, like P , imP depends on the input bit wi+j supplied to the
array on cell i + j at time 0. Hence the site (i + j, 0) must be accessible
on the site imP . In other words, the corresponding vector ((y − 1) (f −
1) i/2 + j) e1 + (y+ 1) (f − 1) i/2 e2 must be in the neighborhood cone. So
(y − 1) (f − 1) i + 2j and (y + 1) (f − 1) i are positive, which implies that
y = −1.

4.2.2 Case 2. The compression does not apply below the diagonal
line i + j = n

A common characteristic of the acceleration with a Firing Squad and the
another variant is that the stable axis is u = (−1, 1) (See Figures 4, 5). It
is also a characteristic of all compressions which leave the sites below the
diagonal line unchanged:

Fact 3. Any compression which both does not apply on the sites P = (i, j)
with i + j < n and is compatible with the input constraint, remains stable
on the axis u = (−1, 1).

Proof. Consider two sites R = (n − 1 − i, i) and Q = R + j e2. Below
the diagonal line, R is not affected by the compression. The compression

Linear acceleration for one-dimensional cellular automata 105

applies on Q (otherwise it would be no acceleration). Q and, in the same
way, its image under the compression imQ = C + T1 × (Q− C) depend on
R. Hence the vector R imQ is in the neighborhood cone. That implies the
values (y− 1) (f − 1) ((x+ 1) (i+ j −n)− 2 j + 1)/(xy− 1) and (x+ 1) (f −
1) ((i− j−n) (y+1)+2 j+y)/(xy−1)+2 f j−f +1 are positive. It follows
that x = −1.

Finally we wonder what compressions with a stable axis u = (−1, 1) and
their complementary compression are achievable on CA. Figure 6 depicts
different cases. We have to take care how the two compressions link together
along the line C + α v.
First the segment {C+α (1, y) : 0 ≤ α < f n} should be characterized by the
CA. In the given examples, it is feasible when y = 0 (with a Firing Squad),
y = 1 (a simple signal with speed 1), y = 1/2 (with a delayed Firing Squad).
But is it feasible when y = −1/5?
Second, we have also to clarify how to patch things up on the segment.

5 Conclusion

Investigating linear acceleration on one-dimensinal CA, we have approched
the question of geometric transformations and their composition. The dif-
ficulty is to make explicit under which conditions these transformations are
feasable or not on a CA. Different constraints come into play: the neigh-
borhood constraint is rather easily controlled whereas the input constraint
and the problem of sticking together transformations turn out to be more
delicate to handle. It would be also worthwhile to explore the feasible trans-
formations in higher dimensional CA.

References

[1] Terry Beyer. Recognition of topological invariants by iterative arrays.
PhD thesis, Cambridge, MA, USA, 1969.

[2] Karel Čuĺık II. Variations of the firing squad problem and applications.
Information Processing Letters, 30(3):152 – 157, 1989.

[3] Patrick C. Fischer. Generation of primes by a one-dimensional real-time
iterative array. Journal of the ACM, pages 388–394, 1965.

[4] Olivier Heen. Économie de ressources sur automates cellulaires. PhD
thesis, Paris 7, 1996.

[5] Jacques Mazoyer and Nicolas Reimen. A linear speed-up theorem for
cellular automata. Theoretical Computer Science, 101(1):59–98, 1992.

106 V. Terrier

v = (1,− 1
5
)

v = (1, 0)

v = (1, 1
5
)

v = (1, 1)

Figure 6: Compressions composition with a stable axis u = (−1, 1)

J. Kari, M. Kutrib, A. Malcher (eds.):
Workshop on Cellular Automata and Discrete Complex Systems 2013 107

Standardizing the set of states and the
neighborhood of asynchronous cellular automata

Thomas Worsch
Karlsruhe Institute of Technology

worsch@kit.edu

August 17, 2013

Abstract

Smith (1971) has shown that any synchronous CA can be simulated
by one with only 2 states and by one with von Neumann neighborhood
of radius 1. We prove that the same is possible for asynchronous CA.

1 Introduction

More than 40 years ago Smith [4] has shown that each synchronous CA can be
simulated by another synchronous one with only 2 states, and that each can
be simulated by another synchronous one with von Neumann neighborhood
of radius 1. In the present paper we describe constructions showing that
indeed analogous standardization of the set of states and the neighborhood
are possible for asynchronous CA. To the best of our knowledge this has not
been considered in the literature until now. To simplify the presentation we
will only consider one-dimensional CA explicitly. But it will be obvious how
to generalize the construction to higher dimensions.

The rest of this paper is organized as follows: In Section 2 we recall the
basic definitions for asynchronous CA as far as they are needed later on. In
Section 3 we recap a construction for the simulation of synchronous CA on
asynchronous CA. The underlying idea turns out to be useful also in both
constructions presented. In Section 4 we will describe how an ACA with an
arbitrary set of states can be simulated by one with {0, 1} as its set of states.
In Section 5 we will describe how an ACA with arbitrary neighborhood can
be simulated by one with neighborhood {−1, 0, 1}. We conclude in Section 6.

2 Basics

We write Z for the set of integers, BA for the set of total functions from A
to B, and 2M for the powerset of M . The cardinality of a set M is |M |.

108 Th. Worsch

In this paper we are interested in one-dimensional cellular automata. If
the set of states of one cell is denoted as Q, the set of all configurations is
QZ. A neighborhood is a finite set N = {d1, . . . , dk} of integers. Without
loss of generality one may assume that it is a one-dimensional von Neumann
neighborhood with radius r, which we denote as Nr = {−r, . . . , 0, . . . , r}. A
local configuration is a mapping ` : N → Q; thus QN is the set of all local
configurations. The local configuration ci+N observed by cell i ∈ Z in global
configuration c is defined as ci+N : N → Q : d 7→ c(i + d). The behavior of
a single cell is described by the local transition function f : QN → Q.

In this paper we consider (purely) asynchronous CA (ACA), where in
a global step each cell has two possibilities: to be active and make a state
transition (according to f) or to be passive and not to change its state.
If A ⊆ Z is the activity set of cells which are to apply f , then given a
configuration c one step of the CA will result in configuration c′ defined by

c′(i) =

{
f(ci+N) iff i ∈ A,
c(i) iff i /∈ A.

This will be denoted as c′ = ∆A(c) or as c `A c′; occasionally we will drop
the index A if it is irrelevant. A (finite or infinite) sequence (c0, c1, c2, . . .) of
configurations is a computation, iff for all pairs (ci, ci+1) within the sequence
it is true that ci ` ci+1.

3 A useful idea

As a first step let us consider a construction to modify a local transition
function which has been developed for the synchronous case such that in its
new form it can be used in the asynchronous case. Probably best known
is Nakamura’s idea [2]. Because it is more descriptive we will use another
method which has first been described in [1], but an equivalent, more ex-
plicit version has been discovered independently by Schuhmacher [3]. The
description below is adapted from [5]. The idea will be expanded later on.

Given the set QS of states of a synchronous CA CS , the set QA of states
of the asynchronous CA CA is constructed as follows

QA = QB ∪QT ∪QE

where QB = {(q, B) | q ∈ QS}
QT = {(q, q′) | q, q′ ∈ QS}
QE = {(E, q′) | q′ ∈ QS}

The states in the set QB, QT and QE are called begin, transitional and end
states respectively. Given an initial configuration cS ∈ QZ

S of CS the corre-
sponding initial configuration cA of CA is simply defined as

∀i ∈ Z : cA(i) = (cS(i), B) (1)

Standardizing the set of states and the neighborhood of asynchronous
cellular automata 109

Definition 1. The local rules for CA are as follows:

B→ T: If an active cell is in a state (q, B), it will only change its state, if all
neighbors are in states from QB ∪ QT. If a new state is entered it is
(q, q′) where q′ = fS(q1, . . . , qk) and the qi are the first components of
the states of the neighbors.

T→ E: If an active cell is in a state (q, q′) ∈ QT, it will only change its state,
if all neighbors are in states from QT ∪QE. If a new state is entered it
is (E, q′).

E→ B: If an active cell is in a state (E, q), it will only change its state, if all
neighbors are in states from QE ∪ QB. If a new state is entered it is
(q, B).

Thus a cell always runs in a cycle from a begin state to a transitional state
to an end state and then again to a begin state. We say that a cell makes
progress, if it changes from an end to a begin state. Whenever that happens,
the cell has simulated one state transition of the corresponding guest cell.

An initial configuration to be used (see formula (1) above) has an impor-
tant property: For any cell i the set of states observed in its neighborhood
i + N does not contain states from all three subsets QB, QT and QE simul-
taneously. Let us call this the “states-not-mixed property”. Rereading the
description of the local rules immediately shows the following:

Lemma 2. A cell only changes its state if in its neighborhood the states are
not mixed. If a cell changes its state then in the resulting local configuration
the states are not mixed.

One should note, that the states-not-mixed property may be destroyed in
neighborhoods in which the center cell is not active. As a consequence of
Lemma 2 the progress of neighboring cells is always closely related:

Corollary 3. Whenever a cell has made progress τ + 1 times, its neighbors
have already made progress at least τ times.

As a simple example an asynchronous simulation of the left shift (of symbols
_ and #) is shown in Figure 1. For example cells 3 and 5 make progress in
step 5 and cell 4 makes progress in step 6.

For another nice property of the construction we use the following defini-
tions. Assume that an arbitrary computation C = c0 `A1 c

1 `A2 c
2 · · · of an

ACA is given. Define its “state change virtual time” sc(C) : N0×Z→ N0 by
defining its value scti = sc(C)(t, i) for cell i ∈ Z in configuration ct as follows:

∀i ∈ Z : sc0i = 0

∀t ∈ N0 ∀i ∈ Z : sct+1
i =

{
1 + scti iff ct+1

i 6= cti
scti otherwise

110 Th. Worsch

1 2 3 4 5 6
t = 0: (_, B) (_, B) (_, B) (_, B) (#, B) (_, B)

⇓ ⇓
t = 1: (_, B) (_, B) (_,_) (_,#) (#, B) (_, B)

⇓ ↓ ⇓ ⇓
t = 2: (_,_) (_, B) (_,_) (_,#) (#,_) (_,_)

⇓ ↓ ⇓ ⇓
t = 3: (_,_) (_,_) (_,_) (E,#) (E,_) (_,_)

⇓ ⇓ ↓ ⇓
t = 4: (_,_) (E,_) (E,_) (E,#) (E,_) (E,_)

↓ ⇓ ⇓
t = 5: (_,_) (E,_) (_, B) (E,#) (_, B) (E,_)

⇓ ⇓
t = 6: (E,_) (E,_) (_, B) (#, B) (_, B) (E,_)

Figure 1: Asynchronous simulation of a left shift using the technique by Lee
et al. [1, 3]. The set of original states is {_,#}. Arrows indicate that a
cell is active. A double arrow indicates, that an activity actually leads to a
change of state. It is assumed that cells outside of the shown segment also
make sufficient progress in order to allow cells 1 and 6 to behave as shown.

That is, scti is the number of proper changes cell i has made up to time t.
Now we define a new asynchronous computation. For τ ≥ 1 the new subsets
Bτ ⊆ Z of active cells are chosen as follows:

Bτ = {i ∈ Z | ∃t : scti = τ} (2)

Bτ contains all cells which have changed their states at least τ times. Starting
with the same configuration d0 = c0 as C have a look at the computation

D = d0 `B1 d
1 `B2 d

2 · · · (3)

If computation C is finite or reaches a fixed point configuration, then only a
finite number of sets Bt is non-empty and D is finite (too).

The essence of the above construction is captured by the following lemma.

Lemma 4. Given an arbitrary computation C, the corresponding computa-
tion D defined in Equations 2 and 3 above satisfies for each cell i the following
properties:

1. Whenever cell i is active in D, it changes its state.

2. In both computations cell i changes its state the same number of times.

3. The resulting states in C and D are always the same.

This immediately implies:

Standardizing the set of states and the neighborhood of asynchronous
cellular automata 111

Corollary 5. If computation C is reaching an end, so does D and the final
configurations of both computations are the same.

Furthermore computation D is “basically” a synchronous one in the following
sense. Consider a computation C with the property INA (“identical number
of activities”) that each cell makes progress for the same number of times.
That implies that the all non-empty sets Bτ = Z. Hence:

Lemma 6. If computation C has property INA then D is a synchronous
computation.

Since we are considering deterministic CA one gets:

Corollary 7. Any two INA computations of the same length result in the
same final configuration. Any INA computations with length 3T results in
the configuration obtained after T steps of the original CA.

In other words, if all cells make progress for the same number of times this
simulates a computation of the original synchronous CA.

4 Standardizing the set of states

In this section we are given an arbitrary ACA C = (Q, f,NC). The goal is
to construct another ACA D = ({0, 1}, g,ND) which simulates C using only
2 states per cell. The construction below has been chosen with an eye to a
simple reasoning not with an eye to a particularly small neighborhood (see
subsection 4.3 for a further remark in this respect). The correctness of the
approach will be obvious since we will make use of the idea explained above.

4.1 Construction

Since different ACA Ci may be simulated by different corresponding ACA
Di the “knowledge” about k = |Q| can be “built into” into the set of states
and the local rules of the Di.

Each cell of C is encoded in a block of cells of D which conceptually is
further divided into three segments:

• a marker consisting of the bit pattern 011110 which never changes;

• an old state segment consisting of k + 1 bits which are used for a one-
hot encoding of the “states” of Q∪{E}. State i, 1 ≤ i ≤ |Q|, is encoded
as 0i−110k−i0 and E is encoded as 0k1.

• a new state segment also consisting of k + 1 bits which are used for a
one-hot encoding of the “states” of Q ∪ {B}. State i, 1 ≤ i ≤ |Q|, is
encoded as 0i−110k−i0 and B is encoded as 0k1.

112 Th. Worsch

It should be noted that during a computation it will happen, that for some
transitional time two (or zero bits) are set in a state segment. Nevertheless
the bit pattern 011110 contained in the marker will always stay unique: it
will never occur anywhere else in a block.

Figure 2 shows a sketch of one block of cells. In both state segments
there are k bits, o1, . . . , ok and n1, . . . , nk respectively, for encoding a “real”
state. The bit for the representation of B is denoted xB, and the one for E is
xE.

marker old state new state
0 1 1 1 1 0 o1 o2 · · · ok xE n1 n2 · · · nk xB

Figure 2: Binary encoding of a state; o1, . . . , ok are used for a one-hot
encoding of the old state of the cell, and n1, . . . , nk for the new state.

According to the neighborhood NC of C we will speak of one block of D
being a neighbor of another block. The real neighborhood ND of D has to be
chosen large enough, so that each single cell of a block of D can observe each
block which is neighbor of it as well as each block for which it is a neighbor.

Each state of an initial configuration c of the ACA C is embedded into
a block as shown in Figure 3.

marker old state new state
0 1 1 1 1 0 o1 o2 · · · ok 0 0 0 · · · 0 B

Figure 3: Initial embedding of a state into a block. Exactly one of o1, . . . ,
ok is set to 1. All nj are 0. We have written B to indicate that xB = 1.

The simulation of the activity of one cell of C consists of three phases. As-
sume that old and new state have number i and j respectively (see Figure 4).

B→ T : Initially a block is in a situation as shown in Fig. 3. The transition to
a situation corresponding to a state (qi, qj) happens in two subphases:

BT1: A transition is started when cell nj in the new state segment
(corresponding the new state) is active and it observes that in no
neighboring block the xE is still set to 1.
If this condition is satisfied nj is set to 1.

BT2: As soon as afterwards the xB cell (which is currently 1) becomes
active and observes that another bit in the new state is set it resets
itself to 0 and the representation of a T state has been reached.

T→ E : From this situation a block may continue to change its states, if no
block for which it is a neighbor needs the old state any longer.

TE1: Once this is the case and the xE cell is active it sets its bit to 1.

Standardizing the set of states and the neighborhood of asynchronous
cellular automata 113

TE2: As soon as the cell storing the old state bit oi which still has a 1

becomes active and observes the set xE bit, the bit oi is set to 0.

E→ B : For the simulation of a transition from an E to a B state the cor-
responding x bits have to be adjusted and the 1 bit has to be moved
from the new to the old state segment. This is acheived using four
subphases. As above, each subphase only happens if the responsible
cell observes in its neighborhood that it is allowed to change its state.

EB1: The xB bit of the new state segment is set to 1.
EB2: The bit corresponding of the old state segment corresponding to

the new state is set to 1.
EB3: The bit corresponding of the new state segment corresponding to

the new state is reset to 0.
EB4: The xE bit of the old state segment is reset to 0.

In each case each cell can determine whether it is its turn to change a
bit or not by looking at a sufficiently large neighborhood.

marker old state new state corresponds
oi oj nj to

011110 0 1 0 0 0 0 0 0 0 B (qi, B)
011110 0 1 0 0 0 0 0 1 0 B

011110 0 1 0 0 0 0 0 1 0 0 (qi, qj)

011110 0 1 0 0 0 0 0 1 0 0 (qi, qj)
011110 0 1 0 0 E 0 0 1 0 0

011110 0 0 0 0 E 0 0 1 0 0 (E, qj)

011110 0 0 0 0 E 0 0 1 0 0 (E, qj)
011110 0 0 0 0 E 0 0 1 0 B

011110 0 0 1 0 E 0 0 1 0 B

011110 0 0 1 0 E 0 0 0 0 B

011110 0 0 1 0 0 0 0 0 0 B (qj , B)

Figure 4: All subphases for one block

4.2 Correctness

It is clear that for any global step c `A c′ of the original ACA C there is
a sequence of steps of D simulating it. On the other in each configuration
in each block there is at most one cell that will change its state when it
becomes active. It is therefore clear that the corresponding changes lead to
a simulation of the CA constructed in Section 3.

114 Th. Worsch

4.3 Improvements

As described the simulator needs 2|Q|+O(1) bits per block, i. e. per simulated
cell. This can be reduced to O(log |Q|) bits by encoding old and new state
using log |Q| + O(1) bits. It just has to be made sure that the bit pattern
representing the marker will not appear anywhere else.

A new problem arises for the E → B phase. For each of the log |Q| bits
of a state it must be possible to find out whether it has already been copied
or not. One possibility is to represent each of the log |Q| “logical” bits in a
kind of dual-rail coding as 01 and 10 respectively. In this case one can also
have “empty” location(pair)s as in the one-hot encoding case and it is easy
to detect which bits already have been copied and which not.

5 Standardizing the neighborhood

In this section we are given an arbitrary ACA C = (Q, f,N). Without loss
of generality N = Nr for some positive integer r ≥ 2.

5.1 Construction overview

The goal is to construct another ACAD = (S, g,N1) which simulates C using
only von Neumann neighborhood of radius 1 using the following approach.

• First, from the given CA C one constructs a CA C ′ where each cell (of
the original) has an additional activity bit a which influences the local
transition function:

– If a = 1 an active cell will use the old f as defined by C to
compute its new state.

– If a = 0 an active cell will not change its state.

• Given C ′ the construction for the reduction of the neighborhood in the
synchronous case by Smith [4] is applied resulting in a CA C ′′.

• To C ′′ the construction from Section 3 is applied to make the local
transition function robust for asychronous updating. This is done in
such a way, that any arbitrary subset of cells can have its activity bits
set. That way one gets the required CA D which can simulate global
transitions of the original CA C for arbitrary subsets of active cells.

5.2 An extension of a useful idea

We reuse a concept called asynchronous coin from [5]. There two cells are
needed and different asynchronous coins have to be separated by other cells.
In the present paper each cell of D should simulate a cell of C and contain
an asynchronous coin. To this end first of all, the cells are augmented with

Standardizing the set of states and the neighborhood of asynchronous
cellular automata 115

two additional bits: an auxiliary “random” bit r and the “activity” bit a
(initially both are 0). For their computation the cycle B→ T→ E→ B used
in the construction in Section 3 is extended to B → R → A → T → E → B.
Roughly speaking the R subphase will be used to set the r bits of some cells.
Subsequently during the A subphase the a bits will be computed. Everything
has to be set up in such a way that for every subset of all cells it can happen
(due to different asynchronous updatings) that exactly the cells in the subset
have a set to 1. Conceptually this happens in two steps:

1. An arbitrary non-empty subset of cells set their r bit to 1.

2. Each cell computes its a bit as the exclusive or of its own r bit and the
r bit of its left neighbor.

This allows any pattern of a bits to be realized by always setting at least
one r bit to 1:

• If at least one a should be set to 1, setting the r bit of one of those
cells to 1 uniquely determines the r bits of all other cells.

• If all a bits should be 0, choose all r bits set to one.

Formally given an ACA C = (Q, f,N) an ACA C ′ = (Q′, f ′, N) is con-
structed as follows. First of all, Q′ is chosen as

Q′ = (QB ∪QR ∪QA ∪QT ∪QE)× {0, 1} × {0, 1}
where QB = {(q, B) | q ∈ Q}

QR = {(q, R) | q ∈ Q}
QA = {(q, A) | q ∈ Q}
QT = {(q, q′) | q, q′ ∈ Q}
QE = {(E, q′) | q′ ∈ Q}

The transition function will ensure that cells in a B state will always have
their r and a bits set to 0. To this end Definition 1 extended: The direct
transitions from B states to T states is broken up into substeps as described
above, using R and A states. It should be noted that in some cases a cell may
“jump” directly from B to A (omitting an R).

Definition 8. Compared to Definition 1 the important changes are detailed
below. B→ T is replaced by the first three points:

B→ R: An active cell in state (q, B) which does not observe an E states at
its right neigbor and observes a B state at its left neighbor, will enter
state (q, R) and set its r bit to 1.

A cell in state (q, B) which already observes an R state at its left neigh-
bor, will enter state (q, A) and leave its r bit at 0 but set its a bit to 1
(because it left neighbor will have r = 1).

116 Th. Worsch

R→ A: An active cell in a R state computes its a bit as the exclusive or of
the r bits of itself and of its left neighbor.

A→ T: An active cell in a state (q, A), it will only change its state, if all
neighbors are in states from QA ∪QT. If this is the case the new state
depends on the activity bit of the cell:

• If a = 1 the new state is (q, q′) where q′ = fS(q1, . . . , qk) and the
qi are the first components of the states of the neighbors.

• If a = 0 the new state is (q, q).

T→ E: unchanged;

E→ B: as before; additionally each cell resets both its r and its b bit to 0.

5.3 Correctness

First, the activity bits have been added to C and f was defined as: If a = 1
then use the original f , and if a = 0 then do nothing If A is the set of cells
with activity bit 1, this ensures that the synchronous execution of one step
of C ′ corresponds to the asynchronous step of C with set A of active cells.

To C ′ the construction for reducing the neighborhood in the synchronous
case [4] is applied resulting in a CA C ′′. If A is the set of cells with a = 1,
this ensures that the synchronous execution of a fixed number of steps of C ′′

corresponds to the asynchronous step of C with set A of active cells.
Finally, to C ′′ the construction from Sec. 3 is applied to make f robust

for asychronous updating resulting in the ACA D. This does not change
the neighborhood, it is {−1, 0, 1} as for C ′′. As described in Sec. 5.2 the
asynchronicity D can be exploited to have the activity bits of C ′′ set in a
arbitrary subset of cells. Hence, using different asynchronous updatings D
can simulate global transitions of the original CA C for arbitrary subsets of
active cells.

6 Summary and Outlook

We have shown that each ACA can be simulated by another one with only
2 states, and that each ACA can be simulated by another one with von
Neumann neighborhood of radius 1.

Concerning the standardization of the neighborhood the construction
presented above is considerably simpler and thus also lends itself to less
involved notions of simulation than other constructions (e. g. [5]) which use
neighborhood radius 1. Concerning the standardization of the set of states
constructions of intrinsically universal ACA do not help at all.

It remains to be seen whether there are constructions for α-asynchronous
CA which yield similar results as presented above.

Standardizing the set of states and the neighborhood of asynchronous
cellular automata 117

The author gratefully acknowledges interesing disucssions with Christian
Kühnle and Alfred Schuhmacher.

References

[1] Jia Lee, Susumi Adachi, Ferdinand Peper, and Kenichi Morita. Asyn-
chronous game of life. Physica D, 194(3-4):369–384, 2004.

[2] Katsuo Nakamura. Asynchronous cellular automata and their computa-
tional ability. Systems, Computers, Control, 5(5):58–66, 1974.

[3] Alfred Schuhmacher. Simulationsbegriffe bei asynchronen Zellularauto-
maten. Report for a student seminar, 2012.

[4] Alvy Ray Smith III. Cellular automata complexity trade-offs. Informa-
tion and Control, 18:466–482, 1971.

[5] Thomas Worsch. Intrinsically universal asynchronous CA. Natural Com-
puting, page (accepted for publication), 2013.

118

Author Index

Adak, Sumit 67

Baetens, Jan M. 11
Bo lt, Witold 11

Das, Sukanta 67, 87
De Baets, Bernard 11

Goles, Eric 57

Imai, Tetsuo 21

Kari, Jarkko 31, 39

Makarenko, Alexander 49
Mart́ınez, Genaro 77
Montealegre, Pedro 57

Naskar, Nazma 67
Ninagawa, Shigeru 77

Roy, Souvik 87

Salo, Ville 31
Sethi, Biswanath 87

119

120

Tanaka, Atsushi 21
Terrier, Véronique 97
Törmä, Ilkka 31

Worsch, Thomas 107

Zhang, Kuize 39

121

122

