
I F I G

R e s e a r c h

R e p o r t

Institut für Informatik

JLU Gießen

Arndtstraße 2

D-35392 Giessen, Germany

Tel: +49-641-99-32141

Fax: +49-641-99-32149

mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

Institut für Informatik

Tight Bounds on the

Descriptional Complexity

of Regular Expressions

Hermann Gruber Markus Holzer

IFIG Research Report 0901

February 2009

Justus-Liebig-

Universität
Gießen

IFIG Research Report

IFIG Research Report 0901, February 2009

Tight Bounds on the Descriptional Complexity of

Regular Expressions

Hermann Gruber1 and Markus Holzer2

Institut für Informatik, Universität Giessen

Arndtstraße 2, D-35392 Giessen, Germany

Abstract. We improve on some recent results on lower bounds for conversion problems for
regular expressions. In particular we consider the conversion of planar deterministic finite
automata to regular expressions, study the effect of the complementation operation on the
descriptional complexity of regular expressions, and the conversion of regular expressions
extended by adding intersection or interleaving to ordinary regular expressions. Almost all
obtained lower bounds are optimal, and the presented examples are over a binary alphabet,
which is best possible.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models
of Computation—Relations between models; F.1.2 [Computation by Abstract Devices]:
Modes of Computation—Parallelism and concurrency; F.3.1 [Logics and Meanings of

Programs]: Specifying and Verifying and Reasoning about Programs—Specification tech-

niques; F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages—
Operations on languages

Additional Key Words and Phrases: Interleaving, shuffle, semi-extended regular expressions,
regular expressions

1E-mail: hermann.k.gruber@informatik.uni-giessen.de
2E-mail: markus.holzer@informatik.uni-giessen.de

Copyright c© 2009 by the authors

Conversion known results this paper with |Σ| = 2

planar DFA to RE 2Θ(
√

n) for |Σ| = 4 [10] 2Θ(
√

n) [Thm. 4]

22Ω(
√

n log n)

for |Σ| = 2 [10]
¬RE to RE

22Ω(n)

for |Σ| = 4 [8]
22Θ(n)

[Thm. 8]

RE(∩) to RE 22Ω(
√

n)

for |Σ| = 2 [7] 22Θ(n)

[Thm. 9]

22Ω(n/ log n)

[Thm. 16]
RE(x) to RE 22Ω(

√

n)

for |Σ| const. [7]
22Θ(n)

for |Σ| = O(n) [Thm. 10]

Table 1. Comparing the lower bound results for conversion problems of deterministic finite
automata (DFA), regular expressions (RE), and regular expressions with additional operations
(RE(·)), where ∩ denotes intersection, ¬ complementation, and x the interleaving or shuffle
operation on formal languages. Entries with a bound in Θ(·) indicate that the result is best
possible, i.e., refers to a lower bound matching a known upper bound.

1 Introduction

It is well known that regular expressions are equally expressive as finite au-
tomata. In contrast to this equivalence, a by now classical result due to Ehren-
feucht and Zeiger states that finite automata, even deterministic ones, can some-
times allow exponentially more succinct representations than regular expres-
sions [4]. Although they obtained a tight lower bound on expression size, their
examples used a largely growing alphabet.

Reducing the alphabet size remained an open challenge [5] until the recent
advent of new proof techniques, see [8, 10, 13]—most of our proofs in this pa-
per rely on the recently established relation between regular expression size and
star height of regular languages [10]. Although this resulted in quite a few new
insights into the nature of regular expressions,see also [7, 11, 12], proving tight
lower bounds for small alphabets remains a challenging task, and not all bounds
in the mentioned references are both tight and cover all alphabet sizes. In this
work, we close some of the remaining gaps: In the case of converting planar finite
automata to regular expressions, we reduce the alphabet size to binary while
retaining the tight lower bound. We prove this directly, by finding a witness
language over a binary alphabet. For the other questions under consideration,
namely the effect of complementation and of extending regular expression syn-
tax by adding an intersection or interleaving operator, proceeding in this way
appears more difficult. Yet, sometimes it proves easier to find witness languages
over larger alphabets. For this case, we also devise a new set of encodings which
are economic and, in some precise sense, robust with respect to both the Kleene
star and the interleaving operation. This extends the outreach of known proof
techniques, and allows us to give a definitive answer to some questions regard-
ing the descriptional complexity of regular expressions that were not yet settled
completely in previous works [5, 7, 8, 10]. Our main results are summarized and
compared to known results in Table 1.

2

2 Basic Definitions

We introduce some basic notions in formal language and automata theory—for
a thorough treatment, the reader might want to consult a textbook such as [16].
In particular, let Σ be a finite alphabet and Σ∗ the set of all words over the
alphabet Σ, including the empty word ǫ. The length of a word w is denoted
by |w|, where |ǫ| = 0. A (formal) language over the alphabet Σ is a subset
of Σ∗.

The regular expressions over an alphabet Σ are defined recursively in the
usual way:1 ∅, ǫ, and every letter a with a ∈ Σ is a regular expression; and
when r1 and r2 are regular expressions, then (r1 + r2), (r1 · r2), and (r1)

∗ are
also regular expressions. The language defined by a regular expression r, denoted
by L(r), is defined as follows: L(∅) = ∅, L(ǫ) = {ǫ}, L(a) = {a}, L(r1 + r2) =
L(r1) ∪ L(r2), L(r1 · r2) = L(r1) · L(r2), and L(r∗1) = L(r1)

∗. The size or
alphabetic width of a regular expression r over the alphabet Σ, denoted by
alph(r), is defined as the total number of occurrences of letters of Σ in r. For
a regular language L, we define its alphabetic width, alph(L), as the minimum
alphabetic width among all regular expressions describing L.

Our arguments on lower bounds for the alphabetic width of regular lan-
guages is based on a recent result that utilizes the star height of regular lan-
guages [10]. Here the star height of a regular language is defined as follows:
For a regular expression r over Σ, the star height, denoted by h(r), is a struc-
tural complexity measure inductively defined by: h(∅) = h(ǫ) = h(a) = 0,
h(r1 · r2) = h(r1 + r2) = max (h(r1), h(r2)), and h(r∗1) = 1 + h(r1). The star
height of a regular language L, denoted by h(L), is then defined as the minimum
star height among all regular expressions describing L. The next theorem estab-
lishes the aforementioned relation between alphabetic width and star height of
regular languages [10]:

Theorem 1. Let L ⊆ Σ∗ be a regular language. Then alph(L) ≥ 2
1
3
(h(L)−1)−1.

The star height of a regular language appears to be more difficult to deter-
mine than its alphabetic width, see, e.g., [14]. Fortunately, the star height can
be determined more easily for a certain subclass of regular languages, namely
the family of bideterministic regular languages, which are defined as follows: A
regular language L is bideterministic if there exists a deterministic finite au-
tomaton A with a single final state such that a deterministic finite automaton
accepting the reversed language LR is obtained from A by reverting the direc-
tion of each transition and exchanging the roles of the initial and final state. For
these languages, the star height can be determined from the digraph structure
of the minimal DFA: The cycle rank of a digraph G = (V, E), denoted by cr(G),
is inductively defined as follows: (1) If G is acyclic, then cr(G) = 0. (2) If G is
strongly connected, then cr(G) = 1 + minv∈V {cr(G− v)}, where G− v denotes
the graph with the vertex set V \{v} and appropriately defined edge set. (3) If G

1 For convenience, parentheses in regular expressions are sometimes omitted and the con-
catenation is simply written as juxtaposition. The priority of operators is specified in the
usual fashion: concatenation is performed before union, and star before both product and
union.

3

is not strongly connected, then cr(G) equals the maximum cycle rank among
all strongly connected components of G.

For a given finite automaton A, let its cycle rank, denoted by cr(A), be
defined as the cycle rank of the underlying digraph. Eggan’s Theorem states that
the star height of a regular language equals the minimum cycle rank among all
NFAs accepting it [3]. Later, the following was proved by McNaughton in [19],
building on his earlier work [20]:

Theorem 2 (McNaughton’s Theorem). Let L be a bideterministic language,
and let A be the minimal trim, i.e., without a dead state, deterministic finite au-
tomaton accepting L. Then h(L) = cr(A).

In fact, the minimality requirement in the above theorem is not needed, since
every bideterministic finite automaton in which all states are useful is already a
trim minimal deterministic finite automaton. Here, a state is useful if it is both
reachable from the start state, and if some final state is reachable from it.

3 Lower Bounds on Regular Expression Size

This section is three folded. First we show an optimal bound converting pla-
nar deterministic finite automata to equivalent regular expressions and then
we present our results on the alphabetic width on complementing regular ex-
pression and on regular expressions with intersection and interleaving. While
the former result utilizes a characterization of cycle rank in terms of a cops and
robbers game given in [10], the latter two results are mainly based on star height
preserving homomorphisms.

3.1 Converting Planar DFAs into Regular Expressions

For the main result of this subsection we need a characterization of cycle rank in
terms of a cops and robber game [20, 10]. This characterization provides a useful
tool in proving lower bounds on the cycle rank of specific families of digraphs.
The cops and strong visible robber game, defined in [17], is given as follows: Let
G = (V, E) be a digraph. Initially, the cops occupy some set of X ⊆ V vertices,
with |X| ≤ k, and the robber is placed on some vertex v ∈ V \X. At any time,
some of the cops can reside outside the graph, say, in a helicopter. In each round,
the cop player chooses the next location X ′ ⊆ V for the cops. The stationary
cops in X∩X ′ remain in their positions, while the others go to the helicopter and
fly to their new position. During this, the robber player, knowing the cops’ next
position X ′ from wire-tapping the police radio, can run at great speed to any
new position v′, provided there is both a (possibly empty) directed path from v

to v′, and a (possibly empty) directed path back from v′ to v in G − (X ∩ X ′),
i.e., he has to avoid to run into a stationary cop, and to run along a path inside
the current strongly connected component of the graph induced by the vertices
free of stationary cops. Afterwards, the helicopter lands the cops at their new
positions, and the next round starts, with X ′ and v′ taking over the roles of X

and v, respectively. The cop player wins the game if the robber cannot move
any more, and the robber player wins if the robber can escape indefinitely.

4

The immutable cops variant of the above game restricts the movements of
the cops in the following way: Once a cop has been placed on some vertex of the
graph, he has to stay there forever. The hot-plate variant of the game restricts
the movements of the robber in that he has to move along a nontrivial path in
each move—even if the path consists only of a self-loop. The following theorem
from [10] gives a characterization of the cycle rank in terms of such a game.

Theorem 3. Let G be a digraph and k ≥ 0. Then k cops have a winning strategy
for the immutable cops and hot-plate strong visible robber game if and only if
the cycle rank of G is at most k.

Now we are ready for the main result of this subsection. Note that in [5] it
was shown that for planar finite automata, one can construct equivalent regular
expressions of size at most 2O(

√
n), for all alphabet sizes polynomial in n. This

is a notable improvement over the general case, since conversion from n-state
deterministic finite automata to equivalent regular expressions was shown to be
of order 2Θ(n) in [10]. Also in [10] a tight lower bound on the conversion of planar
deterministic finite automata to regular expressions of 2Θ(

√
n) for alphabet size

at least four was proven. Next we improve this result to alphabets of size two,
using the above given characterization of cycle rank in terms of a cops and
robber game.

Theorem 4. There is an infinite family of languages Ln over a binary alphabet
acceptable by n-state planar deterministic finite automata, such that alph(Ln) =
2Ω(

√
n).

Fig. 1. A drawing of the graph G3. When viewed as automaton A3, the solid (dashed, respec-
tively) arrows indicate a-transitions (b-transitions, respectively).

Proof. By Theorems 1 and 2, it suffices to find an infinite family of bidetermin-
istic finite automata Ak of size O(k2) such that the digraph underlying Ak has
cycle rank Ω(k).

The deterministic finite automata Ak witnessing the claimed lower bound
are inspired by a family of digraphs Gk defined in [17]. These graphs each admit
a planar drawing as the union of k concentric equally directed 2k-cycles, which
are connected to each other by 2k radial directed k-paths, the first k of which
are directed inwards, while the remaining k are directed outwards; see Figure 1

5

for illustration. Formally, for k ≥ 1, let Gk = (V, E) be the graph with vertex
set V = {ui,j | 1 ≤ i, j ≤ k } ∪ { vi,j | 1 ≤ i, j ≤ k }, and whose edge set can
be partitioned into a set of directed 2k-cycles Ci, and two sets of directed k-
paths Pi and Qi with 1 ≤ i ≤ k. Here each Ci admits a walk visiting the vertices
ui,1, ui,2, . . . , ui,k, vi,1, vi,2, . . . , vi,k in order, each Pi admits a walk visiting the
vertices u1,i, u2,i, . . . , uk,i in order, and Qi admits a walk visiting the vertices
vk,i, vk−1,i, . . . , vk,1 in order.

Fix {a, b} as a binary input alphabet. If we interpret the edges in Gk be-
longing to the cycles Ci as a-transitions, the edges belonging to the paths Pi

and Qi as b-transitions, interpret the vertices as states and choose a single initial
and a single final state (both arbitrarily), we obtain a finite automaton Ak with
O(k2) states whose underlying digraph is Gk. It is easily observed that Ak is
bideterministic; thus it only remains to show that for the underlying graph Gk

holds cr(Gk) = Ω(k).
To this end, we use the game characterization of cycle rank given by Theo-

rem 3, by showing that the robber can escape against k cops in the immutable
cops and hot-plate strong visible robber game. It was shown in [17] that on the
graph Gk, the robber has a winning strategy against k cops in the cops and
strong visible robber game, even if the cops are not immutable and can freely
jump between vertices on the graph. The result is, however, not established for
the hot-plate variant of the game, which restricts the allowed movements of
the robber. But note that at most one additional cop is needed if we drop the
hot-plate restriction: The allowed movements of the robber in hot-plate variant
coincide with the original ones as long as he resides in a strongly connected
component of size at least two. The situation becomes different only once the
robber is finally trapped in a strongly connected component consisting only of
one vertex (and no loop). When playing the game in the hot-plate variant, the
robber is caught in this situation. Otherwise, we place the additional cop at
this vertex to catch the robber. Note that since the extra cop never moves, this
argument equally applies in the immutable cops variant of the game. ⊓⊔

3.2 Operations on Regular Expressions: Alphabetic Width of
Complementation

As noted in [5], the naive approach to complement regular expressions, of con-
verting first the given expression into an nondeterministic finite automaton,
determinizing, complementing the resulting deterministic finite automaton, and
converting back to a regular expression gives a doubly exponential upper bound
of 22O(n)

. The authors of [5] also gave a lower bound of 2Ω(n), and stated as an
open problem to find tight bounds. A doubly-exponential lower bound was found
in [8], but only for alphabets of size at least four. Their witness language is a 4-
symbol encoding of the set of walks in an n-vertex complete digraph. They gave
a very short regular expression describing the complement of the encoded set,
and provided a direct and technical proof showing that the encoded language
requires large regular expressions, carefully adapting the approach originally
taken by Ehrenfeucht and Zeiger [4]. Resulting from an independent approach

6

pursued by the authors, in [10] a roughly doubly-exponential lower bound of

22O(
√

n log n)
was given for binary alphabet.

Now it appears tempting to encode the language from [8] using a star height
preserving homomorphism to further reduce the alphabet size, as done in [10]
for a similar problem. Unfortunately, the proof from [8] does not offer any clue
about the star height of the witness language, and thus we cannot mix these
proof techniques. At least, it is known [2] that the preimage of the encoded
language has large star height:

Theorem 5 (Cohen). Let Jn be the complete digraph on n vertices with self-
loops, where each edge (i, j) carries a unique label aij. Let Wn denote the set
of all walks ai0i1ai1i2 · · · air−2ir−1air−1ir in Jn, including the empty walk ǫ. Then
the star height of language Wn equals n.

To obtain a tight lower bound for binary alphabets, here we use a similar
encoding as in [8], but make sure that the encoding is a star height preserv-
ing homomorphism. Here a homomorphism ρ preserves star height, if the star
height of each regular language L equals the star height of the homomorphic
image ρ(L). The existence of such encodings was conjectured in [3] and proved
in [20]:

Theorem 6. Let Σ = {a1, a2, . . . , ad} be a finite alphabet with d ≥ 1 and define
σ : Σ∗ → {a, b}∗ be the homomorphism given by σ(ai) = aibd−i+1, for 1 ≤ i ≤ d.
Then for every regular language L over Σ, the star height of L equals the star
height of σ(L).

A full characterization of star height preserving homomorphisms was estab-
lished later in [15], which reads as follows:

Theorem 7 (Hashiguchi/Honda). A homomorphism ρ : Γ ∗ → Σ∗ preserves
star height if and only if (1) ρ is injective, (2) ρ is both prefix-free and suffix-
free, that is, no word in ρ(Γ) is prefix or suffix of another word in ρ(Γ), and
(3) ρ has the non-crossing property, that is, for all x1y1 and x2y2 that form two
distinct words in ρ(Γ), at least one of the cross-wise concatenations x1x2 and
x2y1 do not belong to ρ(Γ).

Observe that the given lower bound matches the aforementioned upper
bound on the problem under consideration.

Theorem 8. There exists an infinite family of languages Ln over a binary al-
phabet Σ with alph(Ln) = O(n), such that alph(Σ∗ \ Ln) = 22Ω(n)

.

Proof. We will first prove the theorem for alphabet size 3, and then use a star-
height preserving homomorphism to further reduce the alphabet size to binary.
Let W2n be the set of walks in a complete 2n-vertex digraph as defined in
Theorem 5. Let E = { aij | 0 ≤ i, j ≤ 2n − 1 } denote the edge set of this graph,
and let Σ = {0, 1, $}.

Now define the homomorphism ρ : E∗ → Σ∗ by ρ(aij) = bin(i) · bin(j) ·
bin(i) · bin(j)$, where bin(i) denotes the usual n-bit binary encoding of the

7

number i. Observe that ρ is star height preserving. To his end one has to verify
the properties of Theorem 7. It is easily seen that the encoding is injective, and
since ρ maps every symbol to a word of length 4n + 1, it is both prefix-free
and suffix-free. Finally, for the noncrossing property, observe that the set ρ(E)
coincides with the set of squares of length 4n over {0, 1} followed by a dollar
sign, in symbols ρ(E) = {w2$ | w ∈ {0, 1}∗, |w| = 2n}. Assume x1y1 and x2y2

are two distinct square words of length 4n. If x1 and y1 have different lengths,
then the length of x1y2$ is not equal to 4n+1. Otherwise, there is some position
j where x1y1 and x2y2 have different letters. Then in the word x1y2, the letter
at its j-th position differs from the letter at its (4n − j)-th position, and hence
this word is not a square. Thus, ρ is a star height preserving homomorphism.

Our witness language for ternary alphabets is the complement of the set
Ln = ρ(W2n). To establish the theorem for ternary alphabets, we give a regular

expression of size O(n) describing the complement of Ln; a lower bound of 22Ω(n)

then immediately follows from Theorems 1 and 5 since the homomorphism ρ

preserves star height. As for the witness language given in [8], our expression is
a union of some local consistency tests: Every nonempty word in Ln falls apart
into blocks of binary digits of each of length 4n, separated by occurrences of the
symbol $, and takes the form

(bin(i0) bin(i1))
2$ (bin(i1) bin(i2))

2 $ · · · $(bin(ir−1) bin(ir))
2$.

Thus, word w is not in Ln if and only if we have at least one of the following
cases: (i) The word w has no prefix in {0, 1}4n$, or w contains an occurrence
of $ not immediately followed by a word in {0, 1}4n$; (ii) the region around the
boundary of some pair of adjacent blocks in w is not of the form bin(i)$ bin(i);
or (iii) some block does not contain the pattern (bin(i) bin(j))2, in the sense that
inside the block some pair of bits at distance 2n does not match. To complete
the proof for ternary alphabets, observe that at least one of the above three
cases applies if and only if w matches the following regular expression of size
O(n):

rn = (0 + 1)≥1 + (ǫ + Σ∗$)
(

(0 + 1)≤4n−1$ + (0 + 1)≥4n+1
)

Σ∗

+ (Σ∗$(0 + 1)3n(0 + 1)∗0Σn+11Σ∗)

+ (Σ∗$(0 + 1)3n(0 + 1)∗1Σn+10Σ∗)

+ (Σ∗$(0 + 1)∗0Σ2n1Σ∗)

+ (Σ∗$(0 + 1)∗1Σ2n0Σ∗)

To further decrease the alphabet size to binary, we use the star height pre-
serving homomorphism σ given in Theorem 6, which already proved useful
in [10]. Then σ(Ln) has star height 2n and thus again has alphabetic width

at least 22Ω(n)
. For an upper bound on the alphabetic width of its complement,

note first that every word w that is in σ(Σ∗) but not in σ(Ln) matches the
morphic image under σ of the expression rn given above; and σ(rn) still has
alphabetic width O(n). The words in the complement of σ(Ln) not covered by
the expression σ(rn) are precisely those not in σ({0, 1, $}∗), and the comple-
ment of the latter set can be described by a regular expression of constant size.

8

The union of these two expressions gives a regular expression of size O(n) as
desired. ⊓⊔

3.3 Regular Expressions with Intersection and Interleaving

It is known that extending the syntax with an intersection operator can provide
an exponential gain in succinctness over nondeterministic finite automata. For
instance, in [6] it is shown that the set of palindromes of length n can be de-
scribed by regular expressions with intersection of size O(n). On the other hand,
it is well known that the number of states of a nondeterministic finite automaton
accepting Pn has Ω(2n) states [21]. Of course, it appears more natural to com-
pare the gain in succinctness of such extended regular expressions to ordinary
regular expressions rather than to finite automata. There a 22O(n)

doubly ex-
ponential upper bound readily follows by combining standard constructions [7].

Yet a roughly doubly-exponential lower bound of 22Ω(
√

n)
, for alphabets of grow-

ing size, was found only recently in [8], and a follow-up paper [7] shows that this
can be reached already for binary alphabets. Here we finally establish a tight
doubly-exponential lower bound, which even holds for binary alphabets.

Theorem 9. There is an infinite family of languages Ln over a binary al-
phabet admitting regular expressions with intersection of size O(n), such that

alph(Ln) = 22Ω(n)
.

Proof. First, we show that the set of walks W2n ⊆ E∗ defined in Theorem 5 al-
lows a compact representation using regular expressions with intersection. First
we define M = { ai,j · aj,k | 0 ≤ i, j, k ≤ 2n − 1 } and the observe, that the set
Even of all nonempty walks of even length, i.e., total number of seen edges,
in the graph Jn can be written as Even = M∗ ∩ (E · M∗ · E), while the the
set Odd of all nonempty walks of odd length is Odd = (E · M∗) ∩ (M∗ · E).
Thus, we have W2n = Even∪Odd∪{ǫ}. This way of describing W2n appears to
be a long shot from our goal; it uses a large alphabet and does not even reach
a linear-exponential gain in succinctness over ordinary regular expressions—a
similar statement appears, already over thirty years ago, in [4].

In order to get the desired result, we present a binary encoding τ that pre-
serves star height and allows a representation of the encoded sets τ(M) and τ(E)
by regular expressions with intersection each of size O(n). Let τ : E∗ → {0, 1}∗

be the homomorphism defined by τ(ai,j) = bin(i) · bin(j) · bin(j)R · bin(i)R,
for 0 ≤ i, j ≤ 2n−1. To see that τ preserves star height, we have to check the
properties given in Theorem 7. It can be readily seen that τ is injective, and it
is both prefix-free and suffix-free, since all words in τ(E) are of the same length.
The set τ(E) is just the set of binary palindromes of length 4n, and, by chance,
a proof of the non-crossing property of this set is given already in [9], albeit in
a different context. Thus, by Theorems 1 and 5, the set τ(W2n) has alphabetic

width at least 22Ω(n)
.

It remains to give expressions with intersection of size O(n) for the set τ(W2n).
Since τ(W2n) = τ(Even) ∪ τ(Odd) ∪ {ǫ}, the homomorphism commutes with
concatenation, union, and Kleene star, and, being injective, also with intersec-
tion, it suffices to give regular expressions with intersection for τ(E) and τ(M)

9

of size O(n). To this end, we we make use of an observation from [6], namely
that the sets of palindromes of length 2m admit regular expressions with in-
tersection of size O(m). A straightforward extension of that idea gives a short
regular expression with intersection for the set

Sm,n = { vwvR ∈ {0, 1}∗ | |v| = m, |w| = n },

where m and n are fixed nonnegative integers: Namely, an expression rm,n de-
scribing this set is defined inductively by letting

r0,n = (0 + 1)n

and

rm,n = ((0 + 1) · rm−1,n · (0 + 1)) ∩ (0(0 + 1)∗0 + 1(0 + 1)∗1) ,

for m > 0. Clearly, expression rm,n has size O(m + n) and describes the lan-
guage Sm,n. Next, observe that the set τ(E) = {wwR ∈ {0, 1}∗ | |w| = 2n }
is described by expression rn,0, which is of size O(n). Finally, note that the
set τ(M) being equal to

{bin(i) bin(j) bin(j)R bin(i)R bin(j) bin(k) bin(k)R bin(j)R | 0 ≤ i, j, k ≤ 2n−1 },

can be written as τ(E)2∩{0, 1}2n ·Sn,n ·{0, 1}3n. The latter set can be described
by a regular expression with intersection of size O(n) again, and the proof is
completed. ⊓⊔

The interleaving of languages is another natural language operation known
to preserve regularity. Regular expressions extended with interleaving were first
studied in [18], with focus on the computational complexity of word prob-
lems. They also showed that regular expressions extended with an interleaving
operator can be exponentially more succinct than nondeterministic finite au-
tomata [18]. Very recently, it was shown in [7] that regular expressions with
interleaving can be roughly doubly-exponentially more succinct than regular
expressions: Converting such expressions into ordinary regular expressions can

cause a blow-up in required expression size of 22Ω(
√

n)
, for constant alphabet size.

This bound is close to an easy upper bound of 22O(n)
that follows from standard

constructions, see, e.g., [7] for details. If we take alphabets of growing size into
account, the lower bound can be increased to match this trivial upper bound.
The language witnessing that bound is in fact of very simple structure.

Theorem 10. There is an infinite family of languages Ln over an alphabet of
size O(n) having regular expressions with interleaving of size O(n), such that

alph(Ln) = 22Ω(n)
.

Proof. We consider the language Ln described by the shuffle regular expression

rn = (a1b1)
∗
x (a2b2)

∗
x · · · x (anbn)∗

of size O(n) over the alphabet Γ = {a1, a2, . . . , an, b1, b2, . . . , bn}.

10

To give a lower bound on the alphabetic width of Ln, we estimate first the
star height of Ln. The language Ln can be accepted by a 2n-state partial bideter-
ministic finite automaton A = (Q, Σ, δ, q0, F), whose underlying digraph forms
a symmetric n-dimensional hypercube: The set of states is Q = {0, 1}n, the
state q0 = 0n is the initial state, and is also the only final state, i.e., F = {0n}.
For 1 ≤ i ≤ n, the partial transition function δ is specified by δ(p, bi) = q and
δ(q, ai) = p, for all pairs of states (p, q) of the form (x0y, x1y) with x ∈ {0, 1}i−1

and y ∈ {0, 1}n−i. It can be readily verified that this partial deterministic finite
automaton is reduced and bideterministic. Therefore, the star height of Ln coin-
cides with the cycle rank of the n-dimensional symmetric Cartesian hypercube.
For a symmetric graph G, the cycle rank of G coincides with its (undirected)
elimination tree height, which is in turn bounded below by the (undirected)
pathwidth of G. Many structural properties of the n-dimensional hypercube are
known, and among these is the recently established fact [1] that its pathwidth
equals

∑n−1
i=0

(

i
⌈i/2⌉

)

= Θ(2n−1/2 log n), where the latter estimate uses Stirling’s

approximation. Using Theorem 1, we obtain alph(Ln) = 2Ω(2n−1/2 log n) = 22Ω(n)
,

as desired. ⊓⊔

For a similar result using binary alphabets, we will encode the above witness
language in binary using a star height preserving homomorphism. Some extra
care has to be taken, however. The ideal situation one might hope for is to find
for each Γ = {a1, a2, . . . an} a suitable star height preserving homomorphism
ρ : Γ ∗ → {0, 1}∗ such that ρ(x x y) = ρ(x) x ρ(y), for all x, y ∈ Γ ∗. This
aim however appears to be a bit too ambitious. In all cases we have tried,
the right-hand side of the above equation can contain words which are not
even valid codewords. In [7] this difficulty is avoided altogether by simulating
regular expressions with intersection by those with interleaving, using a trick
from [18]. The drawback here is that the simulation takes place at the expense
of introducing an extra symbol and polynomially increased size of the resulting
expression with interleaving. To overcome this difficulty, Warmuth and Haussler
devised a particular encoding [22], which they called shuffle resistant, that has
the above property once we restrict our attention to codewords. Inspired by a
property of this encoding proved later by Mayer and Stockmeyer [18, Prop. 3.1],
we are led to define in general a shuffle resistant encoding as follows:

Definition 11. An injective homomorphism ρ : Γ ∗ → Σ∗, for some alpha-
bets Γ and Σ, is shuffle resistant if ρ(L(r)) = L(ρ(r)) ∩ ρ(Γ)∗, for each regular
expression r with interleaving over Γ .

The following is proved in [18, Prop. 3.1] for the encoding proposed by
Warmuth and Haussler in [22]:

Theorem 12. Let Γ = {a1, a2, . . . , an} and Σ = {a, b}. The homomorphism
ρ : Γ ∗ → Σ∗, which maps ai to ai+1bi is shuffle resistant.

Incidentally, this encoding also preserves star height. The drawback is, how-
ever, that alph(h(r)) = Θ(|Σ| alph(r)), for r a regular expression with interleav-
ing. We now present a general family of more economic encodings, into alphabets
of size at least 3, that enjoy similar properties.

11

Theorem 13. Let Γ and Σ be two alphabets, and $ be a symbol not in Σ. If
ρ : Γ ∗ → (Σ ∪ {$})∗ is an injective homomorphism with ρ(Γ) ⊆ Σk$, for some
integer k, then ρ is shuffle resistant.

Proof. We need to show that for each such homomorphism ρ, the equality
ρ(L(r)) = L(ρ(r)) ∩ ρ(Γ)∗ holds for all regular expressions r with interleaving
over Γ . The outline of the proof is roughly the same as the proof for Theorem 12
as sketched in [18]. The proof is by induction on the operator structure of r,
using the stronger inductive hypothesis that

L(ρ(r)) ⊆ ρ(L(r)) ∪ E, with E = (ρ(Γ))∗Σ≥k+1(Σ ∪ $)∗ (1)

Roughly speaking, the “error language” E specifies that the first error occurring
in a word in L(ρ(r)) but not in (ρ(Γ))∗ must consist in a sequence of too many
consecutive symbols from Σ.

The base cases are easily established, and also the induction step is easy for
the regular operators concatenation, union, and Kleene star. The more difficult
part is to show that if two expressions r1 and r2 satisfy Equation (1), then this
also holds for r = r1 x r2. To prove this implication, it suffices to show the
following claim:

Claim 14. For all words u, v in ρ(Γ)∗∪E and for each word z in u x v the follow-
ing holds: If both z ∈ (Σk$)∗ and u, v ∈ ρ(Γ)∗, then z ∈ ρ

(

ρ−1(u) x ρ−1(v)
)

.
Otherwise, z ∈ E.

Proof. We prove the claim by induction on the length of z. The base case with
|z| = 0 is clear. For the induction step, assume |z| > 0 and consider the prefix
y consisting of the first k + 1 letters of z. Such a prefix always exists if z is
obtained from shuffling two nonempty words from ρ(Γ)∗ ∪ E. The cases where
u or v is empty are trivial.

Observe first that it is impossible to obtain a prefix in Σ<k$ by shuffling two
prefixes u′ and v′ of the words u and v. Also, a prefix in Σ>k always completes
to a word z ∈ E.

It remains to consider the case z has a prefix y in Σk$. To obtain such a
prefix, two prefixes u′ and v′ have to be shuffled, with (u′, v′) ∈ (Σj)× (Σk−j$)
or (u′, v′) ∈ (Σj$)× (Σk−j). But since these are prefixes of words in ρ(Γ)∗ ∪E,
the index j can take on only the values j = 0 and j = k. Thus, if y ∈ Σk$,
then y is indeed in ρ(Γ), and y is obtained by observing exclusively the first
k + 1 letters of u, or exclusively the first k + 1 letters of v. Hence at least one of
the subcases y−1z ∈ (y−1u) x v and y−1z ∈ u x (y−1v) holds. We only consider
the first subcase, for the second one a symmetric argument applies.

It is not hard to see that we can apply the induction hypothesis to this
subcase: Because y ∈ ρ(Γ) and u ∈ ρ(Γ)∗ ∪ E, the word y−1u is again in
the set ρ(Γ)∗ ∪ E. Having furthermore |y−1z| < |z|, the induction hypothesis
readily implies that claimed statement also holds for the word z = y(y−1z).
This completes the proof of the claim. ⊓⊔

Having established the claim, completing the proof of the statement L(ρ(r)) ⊆
ρ(L(r)) ∪ E is a rather easy exercise. ⊓⊔

12

The existence of economic shuffle resistant binary encodings that further-
more preserve star height is shown next.

Theorem 15. Let Γ be an alphabet. There exists a homomorphism ρ : Γ ∗ →
{0, 1}∗ such that (1) |ρ(a)| = O(log |Γ |), for every symbol a ∈ Γ , and (2) the
homomorphism ρ is shuffle resistant and preserves star height.

Proof. Without loss of generality assume Γ = {a1, a2, . . . a2k} for some k ≥ 0. In
a first step, we encode into an alphabet of size three. Let σ : Γ ∗ → ({0, 1}∪{$})∗

be the homomorphism given by σ(ai) = bin(i) · bin(i)$, with bin(i) being the
usual k-bit binary encoding of the number i. Obviously, σ maps all alphabet
symbols to strings of length O(log |Γ |). That the encoding is shuffle resistant
follows from Theorem 13, and that it preserves star height is shown along the
same lines as in the proof of Theorem 8, where we studied a rather similar
encoding. In a second step, we use the homomorphism τ from Theorem 12 to
further decrease the alphabet size from ternary to binary. This encoding is both
shuffle resistant and preserves star height. The composed encoding ρ = τ ◦ σ

does the job: We have τ(σ(a)) = O(log |Γ |), and it is readily proved that τ ◦ σ

is both shuffle resistant and preserves star height by expanding the definitions
of these two notions. ⊓⊔

For regular expressions with interleaving we show that the conversion to
ordinary regular expressions induces a 22Ω(n/ log n)

lower bound for binary input
alphabet.

Theorem 16. There is an infinite family of languages Ln over a binary al-
phabet admitting regular expressions with interleaving of size O(n), such that

alph(Ln) = 22Ω(n/ log n)
.

Proof. Our witness language will be described by the expression

ρ(rn) = (ρ(a1)ρ(b1))
∗
x (ρ(a2)ρ(b2))

∗
x · · · x (ρ(an)ρ(bn))∗,

obtained by applying the homomorphism ρ from Theorem 15 to the expression
rn used in the proof of Theorem 10. This expression has size O(n log n), and to
prove the theorem, it will suffice to establish that L(ρ(rn)) has alphabetic width

at least 22Ω(n)
.

Recall from the proof of Theorem 10 that the star height of L(rn) is bounded
below by 2Ω(n). Since ρ preserves star height, the same bound applies to the
language ρ(L(rn)). By Theorem 1, we thus have

alph(ρ(L(rn))) = 22Ω(n)
. (2)

Unfortunately, this bound applies to the language ρ(L(rn)) rather than to
L(ρ(rn)). At least, as we know from Theorem 15 that ρ is a shuffle resistant
encoding, these two sets are related by

L(ρ(rn)) ∩ ρ(Γ)∗ = ρ(L(rn)), (3)

with Γ = {a1, b1, . . . , an, bn}.

13

To derive a similar lower bound on the language L(ρ(rn)), we use the
2O(n(1+log m)) upper bound from [12] on the alphabetic width of the intersec-
tion for regular languages of alphabet width m and n, respectively, for m ≥ n.
To this end, let α = α(n) denote the alphabetic width of L(ρ(rn)). We show first
that α(n) ≥ alph(ρ(Γ)∗). Assume the contrary. By Theorem 15, the set ρ(Γ)∗

admits a regular expression of size O(n log n). Assuming α(n) ≤ alph(ρ(Γ)∗),
the upper bound on the alphabetic width of intersection implies that ρ(L(rn)) =

L(ρ(rn))∩ ρ(Γ ∗) admits a regular expression of size 2O(n log2 n). But this clearly
contradicts Inequality (2). Thus, α ≥ alph(ρ(Γ)∗). Applying the upper bound
for intersection to the left-hand side of Equation (3), we obtain

alph(ρ(L(rn))) = alph(L(ρ(rn)) ∩ ρ(Γ ∗)) = 2O(n log n log α). (4)

Inequalities (2) and (4) now together imply that there exist positive constants c1

and c2 such that, for n large enough, holds 22c1n
≤ 2c2n log n log α. Taking double

logarithms on both sides and rearranging terms, we obtain c1n − O(log n) ≤
log log α. Since the the left-hand side is in Ω(n), we thus have alph(L(ρ(rn))) =

α = 22Ω(n)
, and the proof is completed. ⊓⊔

References

1. L. S. Chandran and T. Kavitha. The treewidth and pathwidth of hypercubes. Discrete

Mathematics, 306(3):359–365, 2006.
2. R. S. Cohen. Star height of certain families of regular events. Journal of Computer and

System Sciences, 4(3):281–297, 1970.
3. L. C. Eggan. Transition graphs and the star height of regular events. Michigan Mathe-

matical Journal, 10:385–397, 1963.
4. A. Ehrenfeucht and H. P. Zeiger. Complexity measures for regular expressions. Journal

of Computer and System Sciences, 12(2):134–146, 1976.
5. K. Ellul, B. Krawetz, J. Shallit, and M.-W. Wang. Regular expressions: New results and

open problems. Journal of Automata, Languages and Combinatorics, 10(4):407–437, 2005.
6. M. Fürer. The complexity of the inequivalence problem for regular expressions with

intersection. In J. W. de Bakker and J. van Leeuwen, editors, International Colloquium

on Automata, Languages and Programming, number 85 of LNCS, pages 234–245. Springer,
1980.

7. W. Gelade. Succinctness of regular expressions with interleaving, intersection and count-
ing. In E. Ochmanski and J. Tyszkiewicz, editors, Mathematical Foundations of Computer

Science, number 5162 of LNCS, pages 363–374. Springer, 2008.
8. W. Gelade and F. Neven. Succinctness of the complement and intersection of regular

expressions. In S. Albers and P. Weil, editors, Symposium on Theoretical Aspects of

Computer Science, volume 08001 of Dagstuhl Seminar Proceedings, pages 325–336. IBFI
Schloss Dagstuhl, Germany, 2008.

9. I. Glaister and J. Shallit. A lower bound technique for the size of nondeterministic finite
automata. Information Processing Letters, 59(2):75–77, 1996.

10. H. Gruber and M. Holzer. Finite automata, digraph connectivity, and regular expression
size. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walkuwiewicz, editors, International Colloquium on Automata, Languages and Pro-

gramming, number 5126 of LNCS, pages 39–50. Springer, 2008.
11. H. Gruber and M. Holzer. Language operations with regular expressions of polynomial

size. In C. Câmpeanu and G. Pighizzini, editors, Descriptional Complexity of Formal

Systems, pages 182–193, Charlottetown, PEI, Canada, 2008. CSIT University of Prince
Edward Island.

14

12. H. Gruber and M. Holzer. Provably shorter regular expressions from deterministic finite
automata (Extended abstract). In M. Ito and M. Toyama, editors, Developments in

Language Theory, number 5257 of LNCS. Springer, 2008.
13. H. Gruber and J. Johannsen. Optimal lower bounds on regular expression size using

communication complexity. In R. Amadio, editor, Foundations of Software Science and

Computation Structures, number 4962 of LNCS, pages 273–286. Springer, 2008.
14. K. Hashiguchi. Algorithms for determining relative star height and star height. Informa-

tion and Computation, 78(2):124–169, 1988.
15. K. Hashiguchi and N. Honda. Homomorphisms that preserve star height. Information

and Control, 30(3):247–266, 1976.
16. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.
17. T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width. Journal

of Combinatorial Theory, Series B, 82(1):138–154, 2001.
18. A. J. Mayer and L. J. Stockmeyer. Word problems - This time with interleaving. Infor-

mation and Computation, 115(2):293–311, 1994.
19. R. McNaughton. The loop complexity of pure-group events. Information and Control,

11(1/2):167–176, 1967.
20. R. McNaughton. The loop complexity of regular events. Information Sciences, 1:305–328,

1969.
21. A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars, and

formal systems. In IEEE Symposium on Switching and Automata Theory, pages 188–191.
IEEE Computer Society, 1971.

22. M. K. Warmuth and D. Haussler. On the complexity of iterated shuffle. Journal of

Computer and System Sciences, 28(3):345–358, 1984.

15

