

An Automaton-based Formalism for CARSs

F.L. Tipled

Augmented Reality System.

Modeling CARSs

Basic Properties of CARSs

Conclusions

An Automaton-based Formalism for Cooperative Augmented Reality Systems

## Felix G. Hamza-Lup<sup>1)</sup> Ferucio Laurențiu Ţiplea<sup>2)</sup>

<sup>1)</sup>Department of Computer Science, Armstrong Atlantic State University, Savannah, Georgia 31419-1997, USA <sup>2)</sup>Department of Computer Science, "Al.I.Cuza" University, Iasi, Romania

NCMA 2009



## Outline



Modeling CARSs 2



Basic Properties of CARSs





An Automaton-base Formalism for CARSs

F.L. Tiplea

Augmented Reality System

Modeling CARSs

Basic Propertie of CARSs

Conclusions

- The basic idea of augmented reality is to superimpose graphics, audio and other sense enhancements over a real-world environment in real-time, and to change them to accommodate a user's head- and eye-movements, so that the graphics always fit the perspective;
- Augmented reality is still in an early stage of research and development at various universities and high-tech companies;
- Three basic components needed to make an augmented-reality system work:
  - head-mounted display;
  - tracking system;
  - mobile computing power.



An Automaton-base Formalism for CARSs

F.L. Tiplea

Augmented Reality System

Modeling CARSs

Basic Propertie of CARSs

Conclusions

There are hundreds of potential applications for augmented reality, such as:

- medicine;
- maintenance and construction;
- military;
- gaming;
- instant information

More details about AR systems and related projects:

http://cs.armstrong.edu/felix/



An Automaton-based Formalism for CARSs

F.L. Tiplea

Augmented Reality System

Modeling CARSs

Basic Propertie of CARSs

Conclusions

Example of Cooperative Augmented Reality System:

## Endo-tracheal Intubation (ETI)



*Figure:* Instructors visualizing the 3D models relative position (left), while a remote student performs the ETI procedure (right)



An Automaton-base Formalism for CARSs

F.L. Tiplea

Augmented Reality System

Modeling CARSs

Basic Propertie of CARSs

Conclusions

Example of Cooperative Augmented Reality System:

### **Remote Telerobotic Manipulation**



Figure: Multi-Modal Interaction System



An Automaton-base Formalism for CARSs

F.L. Tiplea

Augmented Reality Systen

Modeling CARSs

Basic Propertie of CARSs

Conclusions

• Actors — entities that are able to perform complex operations on a given set of variables.

$$\mathcal{A} = \{A_1, \ldots, A_k\}$$
 is a given set of actors;

• Objectives — sequence of actions that actors are to perform in order to drive the system from its initial state  $\gamma_0$  to some final state  $\gamma_f$ .

An o-state (observation state) is a valuation  $\gamma$  of a given set  $\mathcal{V} = \{x_1, \dots, x_m\}$  of (typed) variables.  $\Gamma$  is the set of all o-states.

### • Environments and actions —

- $read_A : Q \rightarrow T$  is the read-time function of A;
- write<sub>A</sub> :  $Q \rightarrow T$  is the write-time function of A;



An Automaton-base Formalism for CARSs

F.L. Tiplea

Augmented Reality System

Modeling CARSs

Basic Propertie of CARSs

Conclusions

 Modeling actors — An actor is a 4-tuple A = (Q, Σ, δ, q<sub>0</sub>), where

 $\delta: \mathsf{Q} \times \Sigma \to \mathcal{P}(\mathsf{Q} \times \Sigma)$ 

( $\delta$  may be a partial function). Infinite input sets are allowed;

• Time constraints — A time-constraint is any function

$$\mathcal{C}: \Gamma \to T \cup \{\infty\}$$

which gives the maximum delay permitted to the actors to trigger their actions in a state  $\gamma$ .

 $C(\gamma) = \infty$  means that no time-constraint is imposed.



An Automaton-base Formalism for CARSs

F.L. Tiplea

Augmented Reality System

Modeling CARSs

Basic Propertie of CARSs

Conclusions

• Cooperative system (CS) — is a 5-tuple

6

$$\mathcal{S} = (\mathcal{V}, \mathcal{A}, \textit{read}_\mathcal{A}, \textit{write}_\mathcal{A}, \mathcal{C})$$

• Computation — transition relation between configurations

$$(t,q_1^1,\ldots,q_1^k,\gamma)\vdash (t',q_2^1,\ldots,q_2^k,\gamma')$$

iff there exists an *i* such that:

• read<sub>A<sub>i</sub></sub>( $q_1^i$ )  $\leq C(\gamma)$  (i.e.,  $A_i$  satisfies the time-constraint  $C(\gamma)$ );

- $\bigcirc$   $A_i$  performs an action, i.e.
  - $\delta_i(q_1^i,\gamma) = (q_2^i,\gamma');$
  - $\ \, \bigcirc \ \, t'=t+\textit{read}_{A_i}(q_1^i)+\textit{write}_{A_i}(q_1^i);$

•  $q_2^j = q_1^j$ , for all  $j \neq i$  (i.e., the other actors do not perform any action).



An Automaton-base Formalism for CARSs

F.L. Tiplea

Augmented Reality Systen

Modeling CARSs

Basic Propertie of CARSs

Conclusions

- Objectives again variations of the reachability problem:
  - Reachability Problem

| Instance: | cooperative system $S$ , initial o-state $\gamma_0$ , |
|-----------|-------------------------------------------------------|
|           | and final o-state $\gamma_f$ ;                        |
| Question: | is $\gamma_f$ reachable from $\gamma_0$ ?             |

#### P-Reachability Problem

| Instance: | cooperative system $S$ , initial o-state $\gamma_0$ ,             |
|-----------|-------------------------------------------------------------------|
|           | final o-state $\gamma_f$ , and predicate <i>P</i> over $\Gamma$ ; |
| Question: | is $\gamma_f P$ -reachable from $\gamma_0$ ?                      |

#### Time-reachability Problem

| Instance: | cooperative system S, initial o-state $\gamma_0$ ,                |
|-----------|-------------------------------------------------------------------|
|           | final o-state $\gamma_f$ , predicate <i>P</i> over $\Gamma$ , and |
|           | time value <i>t</i> ;                                             |
| Question: | is $\gamma_f$ P-reachable from $\gamma_0$ in time $t' \leq t$ ?   |



An Automaton-base Formalism for CARSs

F.L. Tiplec

Augmented Reality System

Modeling CARSs

Basic Properti of CARSs

Conclusions

### Example of an actor in ETI:



Figure: Actor A<sub>2</sub>



## Petri Nets and Cooperative Systems

An Automaton-based Formalism for CARSs

F.L. Tipled

Augmented Reality System

Modeling CARSs

Basic Properti of CARSs

Conclusions

### From PN to CS:



*Figure:* a) A transition t; b) The actor  $A_t$ 

$$M[t\rangle M' \Leftrightarrow (0, q_0, \ldots, q_0, \gamma_M) \stackrel{A_t}{\vdash} (0, q_0, \ldots, q_0, \gamma_{M'})$$



An Automaton-base Formalism for CARSs

F.L. Tiplea

Augmented Reality Systen

Modeling CARSs

Basic Propertie of CARSs

Conclusions

## From CS to PN:

- A cooperative system S is called monotonic if:
  - for any variable x, its domain is N;
  - for any actor A and any transition  $(q', \gamma') \in \delta(q, \gamma)$  of A, the following property holds true

$$(q', \bar{\gamma} + (\gamma' - \gamma)) \in \delta(q, \bar{\gamma}),$$

for any  $\bar{\gamma} \geq \gamma$  (the inequality between functions is component-wise defined).

• A monotonic cooperative system S is called locally finite if for any actor A and any states q and q' of A, there exists a finite set of vectors with integer components,  $\{V_1, \ldots, V_p\}$ , such that for any transition  $(q', \gamma') \in \delta(q, \gamma)$  of A there exists i with  $\gamma' - \gamma = V_i$ .



# Petri Nets and Cooperative Systems

An Automaton-based Formalism for CARSs

F.L. Tiplea

Augmented Reality System

Modeling CARSs

Basic Propertie of CARSs

Conclusions

#### Theorem 1

For any monotonic and locally finite cooperative system S without time-constraints, there exists a Petri net  $\Sigma$  such that for any configurations *c* and *c'* of *S* there are two markings  $M_c$  and  $M_{c'}$  and a transition  $t_{c,c'}$  satisfying

 $c \vdash c' \quad \Leftrightarrow \quad M_c[t_{c,c'}\rangle M_{c'}.$ 



## Petri Nets and Cooperative Systems

An Automaton-based Formalism for CARSs

F.L. Tipled

Augmented Reality System

Modeling CARS.

Basic Properti of CARSs

Conclusions

### From CS to PN (example):



*Figure:* a) A CS with only one actor *A*; b) A Petri net associated to the CS in a)



# Reachability Problem for Cooperative Systems

An Automaton-based Formalism for CARSs

F.L. Tiplea

Augmented Reality System

Modeling CARSs

Basic Propertie of CARSs

Conclusions

### Theorem 2

The reachability problem for cooperative systems is undecidable.

#### Proof.

The halting problem for counter machines can be reduced to the reachability problem for CS.



# Reachability Problem for Cooperative Systems

An Automaton-based Formalism for CARSs

F.L. Tiplea

Augmented Reality System.

Modeling CARSs

Basic Propertie of CARSs

Conclusions

### Theorem 3

The polynomial time-reachability problem for finite-domain cooperative systems is NP-complete.

#### Proof.

Membership to NP (S,  $\gamma_0$ ,  $\gamma_f$ , predicate P verifiable in polynomial time, and time value t of polynomial size (w.r.t. ||S||):

guess a sequence of transitions of length at most t such that the first one rewrites  $\gamma_0$  and the last one ends up with  $\gamma_t$ ; if the sequence induces a computation then if each configuration in computation verifies Pthen "yes" else "no";

<u>NP-hardness</u>: reduction from the Hamiltonian circuit problem.



## Conclusions

An Automaton-base Formalism for CARSs

F.L. Tiplea

Augmented Reality System

Modeling CARSs

Basic Properties of CARSs

Conclusions

 This work proposes an automaton-based formalism for CARSs;

• Future work:

- in-depth study of the basic properties of the model;
- verification techniques (based on automata theory (reachability-based techniques, model checking etc.));
- accommodate delays in the formalism.