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Computation and Physics 3

Principle of Computational Equivalence

In 2002 Wolfram proposed a vaguely worded Principle of Computational
Equivalence (PCE):

There are various ways to state the Principle of
Computational Equivalence, but probably the most general is
just to say that almost all processes that are not obviously
simple can be viewed as computations of equivalent
sophistication.

PCE . . . has vastly richer implications than the laws of
thermodynamics or, for that matter, than essentially any single
collection of laws in science.
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The Evidence

A very impressive collection of simulations on various systems such as
Turing machine, register machines, tag systems, rewrite systems,
combinators, cellular automata.

“Sophisticated” systems can be quite small. Not new, but still: the
complexity of many apparently simple systems is surprising.

Nota bene: All systems under consideration here are quite limited in
size, one cannot search in any systematic way over spaces of larger
systems.

Moreover, the properties in question are undecidable, so there is a lot of
heuristics here.
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The Objection

PCE is obviously false: the solution to Post’s Problem, due independently
to Friedberg and Muchnik in the 1950’s, shows that there are recursively
enumerable sets of intermediate degree:

∅ <T A <T ∅′

The “process” of enumerating any such set A is neither trivial nor is it as
complicated as, say, the Halting problem.



Computation and Physics 5

The Objection

PCE is obviously false: the solution to Post’s Problem, due independently
to Friedberg and Muchnik in the 1950’s, shows that there are recursively
enumerable sets of intermediate degree:

∅ <T A <T ∅′

The “process” of enumerating any such set A is neither trivial nor is it as
complicated as, say, the Halting problem.



Computation and Physics 6

The Rejoinder

You are cheating. You are constructing a cellular automaton
whose behavior has intermediate degree in some technical
sense, but underneath it all there is a universal Turing machine.
The real computational process is universal.

Wolfram’s response (in essence).

Follows a long tradition of uneasiness about intermediate degrees; all
known examples are totally artificial: natural r.e. sets that are
undecidable are already complete.
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H. Poincaré

Formerly, when one invented a new function, it was to
further some practical purpose; today one invents them in order
to make incorrect the reasoning of our fathers, and nothing
more will ever be accomplished by these inventions.
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A Tough Nut

Wolfram’s objection may sound like sour grapes, but there really is a
serious problem.

For example, the classical Friedberg-Muchnik construction produces not
one but two r.e. sets A and B.

Unfortunately, the disjoint sum A ⊕ B is complete.

So we have to hide information to obtain an intermediate set. The whole
“process” is indeed complete.
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Logic versus Physics

How do we reason reasonably about assertions like PCE?

Logic, abstract computability theory
computations independent of representation of data

Physics, immplementation, concrete computability theory
computations depend on some particular representation of data

Claim

Discrete dynamics provides a good framework to study the connection,
and in particular assertions such as PCE.
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Landauer’s Principle

In the 1950’s John von Neumann speculated that the energy cost
associated with manipulating a single bit is at least

k T ln 2

Around 1960 Rolf Landauer took a closer look at the problem and found
the following result.

Theorem (Landauer 1961)

Erasing a single bit requires at least k T ln 2 energy.
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Rolf Landauer

Information is not a disembodied abstract entity; it is always
tied to a physical representation. It is represented by an
engraving on a stone tablet, a spin, a charge, a hole in a
punched card, a mark on paper, or some other equivalent. This
ties the handling of information to all the possibilities and
restrictions of our real physical world, its laws of physics and its
storehouse of available parts.
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David Deutsch

The theory of computation has traditionally been studied
almost entirely in the abstract, as a topic in pure mathematics.
This is to miss the point of it. Computers are physical objects,
and computations are physical processes. What computers can
or cannot compute is determined by the laws of physics alone,
and not by pure mathematics.
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Max Born

About a prototypical physicist:

Conscious of the infinite complexities of the phenomena
with which he is confronted in every experiment, he resists the
idea of considering a theory as something definitive. He
therefore abhors the word “Axiom,” which in its usual usage
evokes the idea of definitive truth.
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Max Born

About a prototypical mathematician:

The mathematician, on the contrary, has no business with
factual phenomena, but rather with logical interrelations. In
Hilbert’s language the axiomatic treatment of a discipline
implies in no sense a definitive formulation of specific axioms as
eternal truths, but rather the following methodological demand:
specify the assumptions at the beginning of your deliberation,
the stop for a moment and investigate whether or not these
assumptions are partly superfluous or contradict each other.
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Hilbert’s Sixth Problem

A modest proposal:

Axiomatize all of physics.

Wide open a century later; the Theory-of-Everything remains elusive.



Computation and Physics 15

Hilbert’s Sixth Problem

A modest proposal:

Axiomatize all of physics.

Wide open a century later; the Theory-of-Everything remains elusive.



Computation and Physics 16

Aside: Hypercomputation

It has become fashionable to propose models of computation that
supposedly break the “Turing barrier.” Models are not interesting, one
needs physics-like implementations.

Without an axiomatization of physics this seems somewhat silly.
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A Sandbox

A Disclaimer: of course, cellular automata will not be the answer to
Hilbert’s Sixth Problem.

Something like Fredkin’s SALT model might come close but probably one
needs dynamically evolving topology; even then this is mere speculation
at this point.

Question

What is the simplest model that is vaguely physics-like and
has interesting computational properties?
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Phasespace
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� Computation and CA

� Open Problems
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One-Dimensional Cellular Automata

We propose the following model: one-dimensional cellular automata
operating on a suitable space of configurations.

Traditional model:

C = 〈ΣZ, ρ 〉

where ρ, the global map, is continuous and shift-invariant.

x1 x2 x3 x4 x5 x6
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Langton’s CA
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Zoom
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Symbolic Dynamics

Started with Hadamard, Morse, Hedlund.

Cantor space ΣZ has interesting topological properties (compact,
zero-dimensional, totally disconnected Hausdorff space), well-studied in
classical dynamics.

But, it’s ill-behaved when it comes to computation. Even equality
becomes problematic.

We need to find a well-behaved subspace of ΣZ that preserves the
structure of ΣZ and is computationally amenable.
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Finite Configurations

Standard cop-out:

C = ω0 Σ⋆ 0ω = configurations of finite support

Shift invariant and dense, more or less closed under application of ρ.

Violates a basic reflection principle: not closed under ρ−1.
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ζ-Regular Languages

We will need a notion of regularity for languages L ⊆ ΣZ.

One plausible approach: accepted by a ζ-Büchi automaton.

Definition

A ζ-Büchi automaton A consists of a transitions system 〈Q, Σ, τ 〉 and
an acceptance condition (I , F ) where I , F ⊆ Q.

A accepts X ∈ ΣZ if there is a run π of A on X such that
Inf

−(π) ∩ I 6= ∅ and Inf
+(π) ∩ F 6= ∅.

Here Inf
+(π) is the forward recurrent set of states and likewise for

Inf
−(π).
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No Coordinates

Mutatis mutandis, very much like ordinary or ω-regular languages, have
usual closure properties and algorithmic results.

One small exception: there is no intrinsic coordinate system: there are
distinct bi-infinite words that cannot be distinguished by any ζ-Büchi
automaton.

Words are shifts of each other.

Words have the same cover (i.e., the same set of finite factors) and
are recurrent (every finite subword that appears anywhere already
appears bi-infinitely often).

These are the only two possibilities.
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Decomposition Lemma

One can express ζ-regular languages in terms of ω-regular ones.

Lemma

Every ζ-regular language L has the form

L =
⋃

i≤n

Ui
opVi

where all the Ui and Vi are ω-regular languages.

Uop means: flip all the strings in U (co-ω words).

Useful to reduce algorithmic problems from ζ to ω.
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Automaticity

Consider a relational first order structure

A = 〈A; R1, R2, . . . , Rr 〉

A is automatic if its carrier set and all its relations are all regular.

Originates with Epstein, Holt and Thurston’s work on automatic groups;
generalized in 1995 Khoussainov and Nerode. Later extended to ω-words
and trees.
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ζ-Automaticity

Every one-dimensional CA ρ can be associated with a relational structure

Cρ = 〈ΣZ, � 〉

These structures are obviously ζ-automatic.

Theorem

The first order theory of Cρ is decidable (plus slightly more).
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FO Definable Relations

We can effectively convert a formula ϕ(x1, x2, . . . , xk) into a ζ-Büchi
automaton Aϕ such that

L(Aϕ) = { (x1, x2, . . . , xk) ∈ ΣZ | Cρ |= ϕ(x1, x2, . . . , xk) }

The basic decision problems for ζ-Büchi automata are decidable
(Emptiness, Universality, Inclusion, Equality).
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Basic Relation: x � y

. . . x−3 x−2 x−1 x0 x1 x2 x3 . . .
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The canonical automaton Aρ(x , y) for the local map ρ(~x) = x0 ⊕ x1.
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Induction on Syntax of FO Formula

Read words with k tracks where k is the number of variables.

atomic formulae easy

∧ product machine, ∨ disjoint union

∃ x erase track x

¬ is a fiasco, Safra and worse

Algorithm is not elementary recursive.
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Example: Injectivity, Surjectivity
Injectivity and surjectivity are obviously FO properties, so the results from
Amoroso-Patt 1972 and KS 1991 follow.

More surprisingly, the quadratic algorithm in the second reference can be
obtained from the standard decision procedure plus a bit of tinkering.
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Example: Openness

Define x =L y if ∃ n ∈ Z∀ i < n (xi = yi ) and x =R y analogously.
Clearly both relations are regular.

But then the global map is open iff it is k-to-1 for some k iff

∀ x , y , z (x � z ∧ y � z ∧ (x =L y ∨ x =R y) ⇒ x = y)

Thus openess is definable over the extended structure
C′

ρ
= 〈ΣZ, �, =L, =R 〉 and decidable using the same machinery as for

C′
ρ.

A similar trick helps to speed up surjectivity testing.
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Finite CA and Spectra

Finite CA (with some kind of boundary condition) correspond to
structures Cn

ρ
where n is the grid size. Given a sentence ϕ we want to

understand its spectrum:

spec(ϕ) = { n ∈ N | C
n
ρ
|= ϕ }

Theorem

Spectra are regular: the language { 0n | n ∈ spec(ϕ) } is regular.
Moreover, a corresponding finite automaton can be constructed
effectively.
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Example: 3-Cycles

spectrum # ECA examples
∅ 106 0, 1, 4, 5, 6, . . . , 251, 252, 253, 254, 255

3N 108 2, 3, 10, 11, 16, . . . , 245, 246, 247, 248, 249
5N 3 90, 150, 165
6N 18 15, 26, 27, 38, 39, . . . , 167, 180, 181, 210, 211

3, 5 + N 4 62, 118, 131, 145
7 + N 2 73, 109
9N 8 9, 65, 110, 111, 124, 125, 137, 193

7, 9 + N 2 94, 133
12N 4 30, 86, 135, 149
20N 1 105
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Almost Periodic Configurations

A good choice for computationally friendly subspace.

Cap = { ωu x vω | u, x , v ∈ Σ⋆ }

= almost periodic configurations

Theorem

For any cellular automaton ρ Cρ,ap, the restriction of Cρ to Cap, is an
elementary substructure.

Hence the first order theory of Cρ,ap is decidable and coincides with the
first order theory of Cρ.
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� Computation and Physics

� ζ-Automaticity

3 Computation and CA

� Open Problems
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Orbits

To study computation FOL is too weak, we need orbits:

C
∗
ρ = 〈 C, �,

∗
� 〉

Theorem

The first order theory of C∗
ρ

is undecidable in general.
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ECA 110
As M. Cook has shown, given Cap computational universality appears at a
surprisingly low level.
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Reachability

Problem: Reachability Problem

Instance: Two almost periodic configuration x and y , a CA ρ.
Question: Is y in the orbit of x under ρ?

Since almost periodic configurations have a finitary description the
problem is clearly r.e.

By Cook’s result reachability can be complete even for rather simple CA.
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Reachability and Degrees

In fact, over Cap the situation becomes very complicated.

Theorem (Two-Degree Theorem)

For any two r.e. degrees d1 and d2, there is a cellular automaton whose
Reachability Problem has degree d1, and whose Confluence Problem has
degree d2.

Theorem (One-Degree Theorem)

For any r.e. degree d there is a reversible cellular automaton whose
Reachability Problem has degree d.
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Degree Classification

In fact, over Cap we can obtain a rather complicated classification. For
any r.e. degree d let

Cd = all CA with Reachability of degree d

All these classes are non-empty, so the semi-lattice of the r.e. degrees is
transferred to the CA classification.

Thus, chaos reigns supreme: for example, every countable partial order
can be embedded in this classification. Needless to say, it is hard to
check membership.
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Universality is Hard

The degree classification is higly undecidable.

Theorem

Let d be an arbitrary recursively enumerable degree. Then class Cd is
Σd

3-complete.

In particular testing for universality (membership in C∅′) is Σ4-complete.

There is no way in hell to automate Cook’s theorem.
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A Strawman

Here is a plausible definition of a one-dimensional version of a
computational process.

π computor

X0 initial configuration

Gives rise to the corresponding computation, the orbit of X0:

Xn+1 = π(Xn)

Note that a configuration is a snap-shot of the whole computation, not
just some selected part.
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The Observer

How do we extract results from a computation?

τ observer

Given a computational process 〈π, X0〉 and an observer τ the
corresponding output or observation as

Oρ = { τ(Xn) | n ≥ 0 }
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Allocating Blame

Constraints on the complexity of ρ and τ :

ρ a one-dim CA over Cap

X0 almost periodic configuration

τ constant space word map

The computor and observer can only do a little word processing.

Notably, it’s not the observer’s fault if the output Oτ is complete.
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Intermediate Processes

So the observer uncovers some part of the computation but does not
increase the complexity. Moreover, she may hide some details.

Definition

A computational process is

undecidable if there is some observer τ such that Oτ is undecidable.

universal if there is some observer τ such that Oτ is r.e.-complete.

intermediate if it is undecidable but fails to be universal.
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Anti Climax

Burning Question: Is there an intermediate computational process?

Weak Answer: All the known constructions of intermediate degrees
seem to produce commplete processes.

More or less only 2.5 choices

Friedberg-Muchnik priority construction

Daley Busy Beaver priority construction

Kucera priority-free construction

Conjecture

Conspicuous absence thereof.
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� Computation and Physics

� ζ-Automaticity

� Computation and CA

4 Open Problems
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Algorithmic Questions

What fragment for FOL on Cρ can be decided efficiently?

Can one exploit the structure of ζ-words to get better algorithms
(speed up Safra, Kupferman’s ranking method, etc.)?

How about simple CA such as linear rules?

Is there an interesting class of CA for which stronger logics can be
handled?
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Understanding the Structures Cρ

General cookbook:

Similarity: when are structures isomorphic, elementarily equivalent.

Definability: what is definable in the structure; is the class
axiomatizable.

Decidability: is A |= ϕ decidable, is the elementary/first-order
theory of A decidable.

Connections: what are relationships between these and to other
structures.

Logics: how about other logics than first-order.

Aside: is “cellularity” of regular languages decidable?
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FO Theories

Is Th(Cρ) a useful measure of complexity?

How about Th(C∗
ρ)?

Can these theories produce an interesting classification?

Is the theory of Wolfram Class III the same as Class IV?

What happens with stronger logics?
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Principle of Computational Equivalence

Does PCE hold for elementary CA?

What is the least radius/number of symbols where it fails?

How about reversible cellular automata?

Are all known constructions of intermediate degrees complete as
CPs?

Is there an intermediate CP?
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Thank You
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