EVOLVING UNDER SMALL DISRUPTION

Jürgen Dassow Gema M. Martín Francisco J. Vico

Unary Deterministic Finite Automata (UDFA)

Initial Phase

Loop

Cyclic Unary Deterministic Finite Automata (CUDFA)

Representing CUDFAs and CURLs

• A CUDFA is represented as a word $w \in \{0,1\}^+$ (where ones are accepting states) and it will be considered as a genotype.

Let $w = x_1 x_2 ... x_n$ be a CUDFA, we set $B(w) = \{i \mid x_i = 1\}$.

• The regular language accepted by a CUDFA *w* is represented as an infinite set of disjoint successions of natural numbers

$$M = \{\{b_i + |w|k\}_{k \in \mathbb{N}}\}_{i=1,\dots,m}$$

where $b_i \in B(w)$ for any i = 1, ..., m. This language will be considered as the corresponding phenotype of the CUDFA.

Some Bioinspired Operators over CUDFAs

Let $V = \{0,1\}$, $T(m, p) = \{w | w = (x_1x_2...x_m)^p, x_i \in V \text{ for } 1 \le i \le m\}$ for $m, p \in \mathbb{N}^+$ and $h: V \to V$ be a mapping with h(1) = 0 and h(0) = 1. For any natural numbers n, m, p > 0, i with $1 \le i \le n, q > 1$ and $y \in V$, we define the operators:

• addition
$$A_{i,y}: V^n \to V^{n+1}, A_{i,y}(x_1x_2...x_n) = x_1x_2...x_iyx_{i+1}...x_n$$

• partial copy
$$PC_p: T(m, p) \to T(m, p+1)$$
,
 $PC_p((x_1x_2...x_m)^p) = (x_1x_2...x_m)^{p+1}$

• elimination $E_i: V^n \to V^{n-1}, E_i(x_1x_2...x_n) = x_1x_2...x_{i-1}x_{i+1}...x_n$

• partial elimination
$$PE_q: T(m,q) \rightarrow T(m,q-1),$$

 $PE_q((x_1x_2...x_m)^q) = (x_1x_2...x_m)^{q-1}$

• mutation
$$M_i: V^n \to V^n$$
, $M_i(x_1x_2...x_n) = x_1x_2...h(x_i)...x_n$

Disruption of an Operator over a CUDFA

• For two successions $A = \{a + bn\}_{n \in \mathbb{N}}$ and $B = \{c + dk\}_{k \in \mathbb{N}}$, the overlap $ISO_{A,B}$ of *A* and *B* (for Infinite Successions Overlap) is defined as:

$$ISO_{A,B} = \begin{cases} \frac{\gcd(b,d)}{d} & \text{if } A \cap B \neq \emptyset\\ 0 & \text{in other case} \end{cases}$$

• Let *M* and *N* be two CURLs, and let *n* be the number of successions of M. We define the overlap $URLO_{M,N}$ of *M* with *N* (for URLs Overlap) as:

$$URLO_{M,N} = \begin{cases} \frac{1}{n} \sum_{A \in M} ISO_{A,B} & \text{if } M \cap N \neq \emptyset\\ 0 & \text{in other case} \end{cases}$$

• Let $w \in V^+$ be a CUDFA and $O \in M \cup A \cup E \cup PC \cup PE$ be an operator such that O(w) is defined. Let *L* and *L*' be the CURLs represented by *w* and O(w), respectively. We define the disruption D(O,w) of the operator *O* over *w* as:

$$D(O, w) = (1 - URLO_{L,L'}, 1 - URLO_{L',L})$$

Disruption of the Operators

Lemma 2. Let $w \in V^+$ be a CUDFA. The CURLs represented by w and by w^n , with $n \in \mathbb{N}$ and n > 1 are the same.

Corollary 1. Let $w \in V^+$ be a CUDFA. The CURLs represented by w^n and w^m , $n, m \in \mathbb{N}$ and n, m > 1, coincide.

Corollary 2. For any p, q > 1, PC_p and PE_q are not disruptive operators.

Lemma 3. Let $w \in V^+$ be a CUDFA and *i* a natural number with $1 \le i \le |w|$. If $|w|_1 = m$, then

- $|w|_1 = m$, then • $D(M_i, w) = (0, \frac{1}{m+1})$ if we mutate a zero into a one,
- $D(M_i, w) = (\frac{1}{m+1}, 0)$ if we mutate a one into a zero.

Disruption of the Operators

Lemma 4. For any CUDFA $w \in V^+$ with $|w|_1 = m$, any natural number *i* with $1 \le i \le |w|$, and any $y \in V$,

$$D(A_{i,y}, w) = (1 - \frac{m + y}{|w| + 1}, 1 - \frac{m}{|w|})$$

Lemma 5. Let $w \in V^+$ be a CUDFA, $|w|_1 = m \ge 1$, *i* a natural number with $1 \le i \le |w|$, and *y* the *i*-th letter of *w*. Then

$$D(E_i, w) = (1 - \frac{m - y}{|w| - 1}, 1 - \frac{m}{|w|})$$

Let the CUDFA $w \in V^+, \mathcal{O} \subseteq \mathcal{M} \cup \mathcal{A} \cup \mathcal{E} \cup \mathcal{PC} \cup \mathcal{PE}$, and a real number λ , $0 < \lambda < 1$ be given.

- We say that a word *v* can be obtained with a disruption strictly less than λ from *w* using \mathcal{O} if there exist operators $O_1, O_2, ..., O_p \in \mathcal{O}$, $p \ge 0$, such that $-v = O_p(O_{p-1}...(O_2(O_1(w)))...)$ and $-D(O_i, O_{i-1}(...(O_2(O_1(w))...)) < (\lambda, \lambda)$ for any $1 \le i \le p$.
- By $LD(w, \mathcal{O}, \lambda)$ we denote the set of all words v which can be obtaine
- By $LD(w, \mathcal{O}, \lambda)$ we denote the set of all words v which can be obtained with a disruption strictly less than λ from w using \mathcal{O} .

Theorem 1. Let $w \in V^+$ be a CUDFA and $0 < \lambda \le \frac{1}{2}$ such that $\frac{1}{|w|_1 + 1} < \lambda$, and let $\mathcal{O} \subseteq \mathcal{M} \cup \mathcal{A} \cup \mathcal{E}$. Then

$$LD(w, \mathcal{O}, \lambda) = \{ v || v |_0 > 0, \frac{1}{|v|_1 + 2} < \lambda \} \cup \{ 1^m | m \ge 1 \} \cup \{ w \}.$$

Proof.

Let us suppose $|w|_0 = t$ and $|v|_0 = q$ for some $t, q \ge 0$. We choose

- $O_1, O_2, ..., O_t \in \mathcal{M}$, we mutate all the zeros of *w*, resulting $1^{|w|}$.
- $\begin{array}{lll} \bullet & \text{Let } b = \mid \mid v \mid \mid w \mid \mid . \\ & & \text{If } \mid w \mid \leq \mid v \mid, \text{ then } O_{t+1}, O_{t+2}, ..., O_{t+b} \in \mathcal{A} \text{, resulting } 1^{\mid v \mid} \text{.} \\ & & \text{If } \mid w \mid > \mid v \mid, \text{ then } O_{t+1}, O_{t+2}, ..., O_{t+b} \in \mathcal{E} \text{ , resulting } 1^{\mid v \mid} \text{.} \end{array}$
- $O_{t+b+1}, O_{t+b+2}, \dots, O_{t+b+q} \in \mathcal{M}$, we mutate all the positions in which $1^{|v|}$ has a one and v has a zero, resulting v.

Corollary 3.

- Let $w \in V^+$ be a CUDFA and $0 < \lambda \le \frac{1}{2}$ such that $\frac{1}{|w|_1 + 1} < \lambda$, and let $\mathcal{O} \subseteq \mathcal{M} \cup \mathcal{A}$. Then $LD(w, \mathcal{O}, \lambda) = \{v ||w| < |v|, |v|_0 > 0, \frac{1}{|v|_1 + 2} < \lambda\} \cup \{1^m | m \ge 1\} \cup \{w\}.$
- Let $w \in V^+$ be a CUDFA and $0 < \lambda \le \frac{1}{2}$ such that $\frac{1}{|w|_1 + 1} < \lambda$, and let $\mathcal{O} = \mathcal{M} \cup \mathcal{PC}$. Then $LD(w, \mathcal{O}, \lambda) = \{v ||w| < |v|, |v|_0 > 0, \frac{1}{|v|_1 + 2} < \lambda\} \cup \{1^m | m \ge 1\} \cup \{w\}.$

Theorem 2. Let $w \in V^+$ be a CUDFA and $0 < \lambda \le \frac{1}{2}$, and let $\mathcal{O} = \mathcal{M} \cup \mathcal{PC} \cup \mathcal{PE}$. Then $LD(w, \mathcal{O}, \lambda) = V^+ \setminus \{0^m \mid m \ge 1\}.$

Proof.

Let |w| = m, $|w|_1 = r > 0$, |v| = n and $|v|_1 = s > 0$. Let y = lcm(m, n)z, $z \in \mathbb{N}^+$, we set $z' = \frac{y}{m}$ and $z'' = \frac{y}{n}$, with z sufficient large such that $\frac{1}{rz'} < \lambda$ and $\frac{1}{sz''} < \lambda$.

- $O_1, O_2, ..., O_{z'-1} \in \mathcal{PC}$, any O_i adds a copy of w, resulting $w^{z'}$.
- Let *t* be the number of positions in which $w^{z'}$ has a zero and $v^{z''}$ has a one. $O_{z'}, O_{z'+2}, ..., O_{z'+t-1} \in \mathcal{M}$, zeros are changed into ones, resulting \overline{w} .
- Let *q* be the number of positions in which \overline{w} has a one and $w^{z''}$ has a zero. $O_{z'+t}, O_{z'+t+2}, \dots, O_{z'+t+q-1} \in \mathcal{M}$, ones are mutated into zeros, resulting $w^{z''}$.
- $O_{z'+t+q}, O_{z'+t+q+2}, \dots, O_{z'+t+q+z''-2} \in \mathcal{PE}$, any O_i cancels a copy of v, resulting v.

Theorem 3. For any word w with $|w|_1 > 0$ and $0 < \lambda \le \frac{1}{2}$, $LD(w, \mathcal{PC} \cup \mathcal{M} \cup \mathcal{A} \cup \mathcal{E}, \lambda) = \{v ||v|_0 > 0, \frac{1}{|v|_1 + 2} < \lambda\} \cup \{1^m | m \ge 1\} \cup \{w\}.$

Proof.

Let $|w|_1 = m \ge 1$, and let v be a word with $\frac{1}{|v|_1} < \lambda$. Then, there is a number $r \in N^+$ such that $\frac{1}{mr} \le \lambda$. Using *r*-1 times operators from \mathcal{PC} which copy w, we get w^r .

Starting from w^r , we construct the same sequence of operators as in Theorem 1.

Conclusions

- The set of the **edit operators** has been **extended** by introducing the partial copy and partial elimination operators.
- We were able to generate with low disruption all words which correspond to non-empty CURLs by iterated applications of the operators mutation, partial copy and partial elimination.
- We have shown that with the other set of operators we can not generate with low disruption all words as before, but the resultant set is also satisfactory from a biological point of view.

Open Problems

• Searching algorithms to determine the minimal number of operators which transform with low disruption a given word into another given word.

• Studying whether the results presented in this work are also satisfied for more complex devices than CUDFA.

Thanks!