
5′ → 3′ Watson-Crick Automata
with Several Runs

Peter Leupold

Department of Mathematics, Faculty of Science
Kyoto Sangyo University, Japan

Joint work with Benedek Nagy (Debrecen)
Presentation at NCMA 2009

P. Leupold 5′ → 3′ Watson-Crick Automata

Motivation for Watson-Crick Automata

What if finite automata worked on DNA strands instead of abstract strings
of symbols?

A DNA strand is not just a simple string, but normally is a double strand
with a three-dimensional helix structure.

P. Leupold 5′ → 3′ Watson-Crick Automata

Motivation for Watson-Crick Automata

What if finite automata worked on DNA strands instead of abstract strings
of symbols?

A DNA strand is not just a simple string, but normally is a double strand
with a three-dimensional helix structure.

P. Leupold 5′ → 3′ Watson-Crick Automata

Abstracting the Structure

We view a DNA strand as a linear sequence of pairs of complementary
symbols..

P. Leupold 5′ → 3′ Watson-Crick Automata

The Head

What could an automaton’s reading head look like?

P. Leupold 5′ → 3′ Watson-Crick Automata

Two Heads

To read both parts of the double strand, two heads are necessary.

P. Leupold 5′ → 3′ Watson-Crick Automata

The Role of Complementarity

Intuitively, a strand and its complement are equivalent from an information
theoretic point of view.

Kuske and Weigel (at DLT 2004) observed, that all language classes of
WK-automata are the same, even when the complementarity relation is
simply the identity relation.

Therefore we will let the automata’s two heads work on the same string
for simplicity of notation.

P. Leupold 5′ → 3′ Watson-Crick Automata

The Role of Complementarity

Intuitively, a strand and its complement are equivalent from an information
theoretic point of view.

Kuske and Weigel (at DLT 2004) observed, that all language classes of
WK-automata are the same, even when the complementarity relation is
simply the identity relation.

Therefore we will let the automata’s two heads work on the same string
for simplicity of notation.

P. Leupold 5′ → 3′ Watson-Crick Automata

The Role of Complementarity

Intuitively, a strand and its complement are equivalent from an information
theoretic point of view.

Kuske and Weigel (at DLT 2004) observed, that all language classes of
WK-automata are the same, even when the complementarity relation is
simply the identity relation.

Therefore we will let the automata’s two heads work on the same string
for simplicity of notation.

P. Leupold 5′ → 3′ Watson-Crick Automata

Moving the Heads

The two strands have a direction...

...and their directions are opposite.

P. Leupold 5′ → 3′ Watson-Crick Automata

Moving the Heads

The two strands have a direction...

...and their directions are opposite.

P. Leupold 5′ → 3′ Watson-Crick Automata

5′ → 3′ Watson-Crick Automata

5′ → 3′ Watson-Crick Automata modify standard Watson-Crick Automata
with the preceding two observations made in mind.

Thus there are two main differences:

• The tape is a standard one, no complementarity.

• The two heads start on opposite ends of the input and run in opposite
directions.

So in contrast to conventional Watson-Crick automata we can expect ease
in recognizing palindromic structures and problems in recognizing
copy-type structures.

P. Leupold 5′ → 3′ Watson-Crick Automata

5′ → 3′ Watson-Crick Automata

5′ → 3′ Watson-Crick Automata modify standard Watson-Crick Automata
with the preceding two observations made in mind.

Thus there are two main differences:

• The tape is a standard one, no complementarity.

• The two heads start on opposite ends of the input and run in opposite
directions.

So in contrast to conventional Watson-Crick automata we can expect ease
in recognizing palindromic structures and problems in recognizing
copy-type structures.

P. Leupold 5′ → 3′ Watson-Crick Automata

5′ → 3′ Watson-Crick Automata

5′ → 3′ Watson-Crick Automata modify standard Watson-Crick Automata
with the preceding two observations made in mind.

Thus there are two main differences:

• The tape is a standard one, no complementarity.

• The two heads start on opposite ends of the input and run in opposite
directions.

So in contrast to conventional Watson-Crick automata we can expect ease
in recognizing palindromic structures and problems in recognizing
copy-type structures.

P. Leupold 5′ → 3′ Watson-Crick Automata

5′ → 3′ Watson-Crick Automata

5′ → 3′ Watson-Crick Automata modify standard Watson-Crick Automata
with the preceding two observations made in mind.

Thus there are two main differences:

• The tape is a standard one, no complementarity.

• The two heads start on opposite ends of the input and run in opposite
directions.

So in contrast to conventional Watson-Crick automata we can expect ease
in recognizing palindromic structures and problems in recognizing
copy-type structures.

P. Leupold 5′ → 3′ Watson-Crick Automata

Runs and Acceptance

A run is a complete reading of the input string by both heads in their
respective direction.

• There are start and end markers on the input string.

• After a run the heads turn around and can read the respectively other
side of the strand – which is the same string in our case.

An input word is accepted in k runs, iff the automaton halts in an
accepting state after k runs.

P. Leupold 5′ → 3′ Watson-Crick Automata

Runs and Acceptance

A run is a complete reading of the input string by both heads in their
respective direction.

• There are start and end markers on the input string.

• After a run the heads turn around and can read the respectively other
side of the strand – which is the same string in our case.

An input word is accepted in k runs, iff the automaton halts in an
accepting state after k runs.

P. Leupold 5′ → 3′ Watson-Crick Automata

Runs and Acceptance

A run is a complete reading of the input string by both heads in their
respective direction.

• There are start and end markers on the input string.

• After a run the heads turn around and can read the respectively other
side of the strand – which is the same string in our case.

An input word is accepted in k runs, iff the automaton halts in an
accepting state after k runs.

P. Leupold 5′ → 3′ Watson-Crick Automata

Runs and Acceptance

A run is a complete reading of the input string by both heads in their
respective direction.

• There are start and end markers on the input string.

• After a run the heads turn around and can read the respectively other
side of the strand – which is the same string in our case.

An input word is accepted in k runs, iff the automaton halts in an
accepting state after k runs.

P. Leupold 5′ → 3′ Watson-Crick Automata

Variants

Definition

The class of languages accepted by 5′ → 3′ full reading finite Watson-Crick
automata in m runs is denoted by

m WK. Such automata are called

N: stateless if they have only one state;

F: all-final if they have only final states;

S: simple if at most one head is moving in every step;

1: 1-limited if exactly one letter is read in every step;

D: deterministic if for all possible configurations c there is at
most one configuration such that c ⇒ c ′.

The corresponding classes of languages are denoted by U

k WK where U is

one of the symbols associated to the variants in the enumeration above.
Also combinations of these variants are possible.

P. Leupold 5′ → 3′ Watson-Crick Automata

Variants

Definition

The class of languages accepted by 5′ → 3′ full reading finite Watson-Crick
automata in m runs is denoted by

m WK. Such automata are called

N: stateless if they have only one state;

F: all-final if they have only final states;

S: simple if at most one head is moving in every step;

1: 1-limited if exactly one letter is read in every step;

D: deterministic if for all possible configurations c there is at
most one configuration such that c ⇒ c ′.

The corresponding classes of languages are denoted by U

k WK where U is

one of the symbols associated to the variants in the enumeration above.
Also combinations of these variants are possible.

P. Leupold 5′ → 3′ Watson-Crick Automata

Variants

Definition

The class of languages accepted by 5′ → 3′ full reading finite Watson-Crick
automata in m runs is denoted by

m WK. Such automata are called

N: stateless if they have only one state;

F: all-final if they have only final states;

S: simple if at most one head is moving in every step;

1: 1-limited if exactly one letter is read in every step;

D: deterministic if for all possible configurations c there is at
most one configuration such that c ⇒ c ′.

The corresponding classes of languages are denoted by U

k WK where U is

one of the symbols associated to the variants in the enumeration above.
Also combinations of these variants are possible.

P. Leupold 5′ → 3′ Watson-Crick Automata

Variants

Definition

The class of languages accepted by 5′ → 3′ full reading finite Watson-Crick
automata in m runs is denoted by

m WK. Such automata are called

N: stateless if they have only one state;

F: all-final if they have only final states;

S: simple if at most one head is moving in every step;

1: 1-limited if exactly one letter is read in every step;

D: deterministic if for all possible configurations c there is at
most one configuration such that c ⇒ c ′.

The corresponding classes of languages are denoted by U

k WK where U is

one of the symbols associated to the variants in the enumeration above.
Also combinations of these variants are possible.

P. Leupold 5′ → 3′ Watson-Crick Automata

Variants

Definition

The class of languages accepted by 5′ → 3′ full reading finite Watson-Crick
automata in m runs is denoted by

m WK. Such automata are called

N: stateless if they have only one state;

F: all-final if they have only final states;

S: simple if at most one head is moving in every step;

1: 1-limited if exactly one letter is read in every step;

D: deterministic if for all possible configurations c there is at
most one configuration such that c ⇒ c ′.

The corresponding classes of languages are denoted by U

k WK where U is

one of the symbols associated to the variants in the enumeration above.
Also combinations of these variants are possible.

P. Leupold 5′ → 3′ Watson-Crick Automata

Variants

Definition

The class of languages accepted by 5′ → 3′ full reading finite Watson-Crick
automata in m runs is denoted by

m WK. Such automata are called

N: stateless if they have only one state;

F: all-final if they have only final states;

S: simple if at most one head is moving in every step;

1: 1-limited if exactly one letter is read in every step;

D: deterministic if for all possible configurations c there is at
most one configuration such that c ⇒ c ′.

The corresponding classes of languages are denoted by U

k WK where U is

one of the symbols associated to the variants in the enumeration above.
Also combinations of these variants are possible.

P. Leupold 5′ → 3′ Watson-Crick Automata

Variants

Definition

The class of languages accepted by 5′ → 3′ full reading finite Watson-Crick
automata in m runs is denoted by

m WK. Such automata are called

N: stateless if they have only one state;

F: all-final if they have only final states;

S: simple if at most one head is moving in every step;

1: 1-limited if exactly one letter is read in every step;

D: deterministic if for all possible configurations c there is at
most one configuration such that c ⇒ c ′.

The corresponding classes of languages are denoted by U

k WK where U is

one of the symbols associated to the variants in the enumeration above.
Also combinations of these variants are possible.

P. Leupold 5′ → 3′ Watson-Crick Automata

Behaviour of 5′ → 3′ Watson-Crick Automata

Lemma

Let A be a deterministic 5′ → 3′ WK-automaton accepting the language
L := {banbanb : n > 0} in one run. For long enough n the computation
for an input word banbanb goes through a configuration where one head is
in the first factor an while the other is in the second.

P. Leupold 5′ → 3′ Watson-Crick Automata

Behaviour of 5′ → 3′ Watson-Crick Automata

Lemma

Let A be a deterministic 5′ → 3′ WK-automaton accepting the language
L := {banbanb : n > 0} in one run. For long enough n the computation
for an input word banbanb goes through a configuration where one head is
in the first factor an while the other is in the second.

P. Leupold 5′ → 3′ Watson-Crick Automata

An Infinite Hierarchy of 5′ → 3′ Watson-Crick Automata

Theorem

For every m > 0 the class of languages accepted by 5′ → 3′ deterministic
WK-automaton in m runs is properly contained in the class of languages
accepted in m + 1 runs, i.e., D

m WK * D

m+1WK.

The witness languages are:

Lm := {ww : w ∈ L′m}

where

L′m := {an1bn2an3bn4 . . . an2m−1bn2m : ni > 0 for 1 ≤ i ≤ 2m}.

P. Leupold 5′ → 3′ Watson-Crick Automata

An Infinite Hierarchy of 5′ → 3′ Watson-Crick Automata

Theorem

For every m > 0 the class of languages accepted by 5′ → 3′ deterministic
WK-automaton in m runs is properly contained in the class of languages
accepted in m + 1 runs, i.e., D

m WK * D

m+1WK.

The witness languages are:

Lm := {ww : w ∈ L′m}

where

L′m := {an1bn2an3bn4 . . . an2m−1bn2m : ni > 0 for 1 ≤ i ≤ 2m}.

P. Leupold 5′ → 3′ Watson-Crick Automata

An Infinite Hierarchy of 5′ → 3′ Watson-Crick Automata

P. Leupold 5′ → 3′ Watson-Crick Automata

Decidability

The fact that 5′ → 3′ Watson-Crick automata accept non-context-free
languages even in just one run suggests that most decidability problems
related to them will not be solvable.

However, since they do not accept all context-free languages, but language
classes somewhat orthogonal to the Chomsky Hierarchy, things are not
obvious.

P. Leupold 5′ → 3′ Watson-Crick Automata

Decidability

The fact that 5′ → 3′ Watson-Crick automata accept non-context-free
languages even in just one run suggests that most decidability problems
related to them will not be solvable.

However, since they do not accept all context-free languages, but language
classes somewhat orthogonal to the Chomsky Hierarchy, things are not
obvious.

P. Leupold 5′ → 3′ Watson-Crick Automata

The Emptiness Problem

Theorem

For the class D

1 WK the non-emptiness problem is undecidable.

For a Turing Machine M we define the language LM that contains all
words w1#w2 . . . #wi−1##wR

i #wR
i−1 . . . #wR

3 #wR
2 where w1, w2, . . . , wi

is a sequence of configurations of a computation of M, w1 is an initial
configuration, and wi is a final and accepting configuration.

• read w1 and wR
2 simultaneously

• check whether wi and wR
i are really the same

• accepts iff the string represents an accepting TM computation

P. Leupold 5′ → 3′ Watson-Crick Automata

The Emptiness Problem

Theorem

For the class D

1 WK the non-emptiness problem is undecidable.

For a Turing Machine M we define the language LM that contains all
words w1#w2 . . . #wi−1##wR

i #wR
i−1 . . . #wR

3 #wR
2 where w1, w2, . . . , wi

is a sequence of configurations of a computation of M, w1 is an initial
configuration, and wi is a final and accepting configuration.

• read w1 and wR
2 simultaneously

• check whether wi and wR
i are really the same

• accepts iff the string represents an accepting TM computation

P. Leupold 5′ → 3′ Watson-Crick Automata

The Emptiness Problem

Theorem

For the class D

1 WK the non-emptiness problem is undecidable.

For a Turing Machine M we define the language LM that contains all
words w1#w2 . . . #wi−1##wR

i #wR
i−1 . . . #wR

3 #wR
2 where w1, w2, . . . , wi

is a sequence of configurations of a computation of M, w1 is an initial
configuration, and wi is a final and accepting configuration.

• read w1 and wR
2 simultaneously

• check whether wi and wR
i are really the same

• accepts iff the string represents an accepting TM computation

P. Leupold 5′ → 3′ Watson-Crick Automata

The Emptiness Problem

Theorem

For the class D

1 WK the non-emptiness problem is undecidable.

For a Turing Machine M we define the language LM that contains all
words w1#w2 . . . #wi−1##wR

i #wR
i−1 . . . #wR

3 #wR
2 where w1, w2, . . . , wi

is a sequence of configurations of a computation of M, w1 is an initial
configuration, and wi is a final and accepting configuration.

• read w1 and wR
2 simultaneously

• check whether wi and wR
i are really the same

• accepts iff the string represents an accepting TM computation

P. Leupold 5′ → 3′ Watson-Crick Automata

The Emptiness Problem

Theorem

For the class D

1 WK the non-emptiness problem is undecidable.

For a Turing Machine M we define the language LM that contains all
words w1#w2 . . . #wi−1##wR

i #wR
i−1 . . . #wR

3 #wR
2 where w1, w2, . . . , wi

is a sequence of configurations of a computation of M, w1 is an initial
configuration, and wi is a final and accepting configuration.

• read w1 and wR
2 simultaneously

• check whether wi and wR
i are really the same

• accepts iff the string represents an accepting TM computation

P. Leupold 5′ → 3′ Watson-Crick Automata

Corollaries

Corollary

For the class D

1 WK the finiteness problem is undecidable.

A deterministic TM accepts words in only one possible computation.
Therefore LM is finite iff M’s language is finite.

Corollary

Every recursively enumerable language is a morphic image of a language
from D

1 WK.

The word accepted by a computation can be extracted from Lm by a
simple morphism.

P. Leupold 5′ → 3′ Watson-Crick Automata

Corollaries

Corollary

For the class D

1 WK the finiteness problem is undecidable.

A deterministic TM accepts words in only one possible computation.
Therefore LM is finite iff M’s language is finite.

Corollary

Every recursively enumerable language is a morphic image of a language
from D

1 WK.

The word accepted by a computation can be extracted from Lm by a
simple morphism.

P. Leupold 5′ → 3′ Watson-Crick Automata

Open Problems

Open Problem

We have establishes the undecidability of the emptiness problem for
deterministic 5′ → 3′ WK-automata with one run. Close to the bottom of
our hierarchy, the regular languages appear. By definition we have the
inclusions F1D

m WK ⊆ FSD

m WK ⊆ FD

m WK ⊆ D

m WK on the path

between them, but as mentioned above, it is unclear, which of them are
proper.

Somewhere on this path there must also lie the border between
decidability and undecidability of the emptiness problem, because for
regular languages it is decidable, even for context-free languages.

Open Problem

Secondly, we believe that D

1 WK is incomparable to the class of linear

languages.
There are examples for D

1 WK LIN, but no example for
D

1 WK ! LIN.

P. Leupold 5′ → 3′ Watson-Crick Automata

Open Problems

Open Problem

We have establishes the undecidability of the emptiness problem for
deterministic 5′ → 3′ WK-automata with one run. Close to the bottom of
our hierarchy, the regular languages appear. By definition we have the
inclusions F1D

m WK ⊆ FSD

m WK ⊆ FD

m WK ⊆ D

m WK on the path

between them, but as mentioned above, it is unclear, which of them are
proper. Somewhere on this path there must also lie the border between
decidability and undecidability of the emptiness problem, because for
regular languages it is decidable, even for context-free languages.

Open Problem

Secondly, we believe that D

1 WK is incomparable to the class of linear

languages.
There are examples for D

1 WK LIN, but no example for
D

1 WK ! LIN.

P. Leupold 5′ → 3′ Watson-Crick Automata

Open Problems

Open Problem

We have establishes the undecidability of the emptiness problem for
deterministic 5′ → 3′ WK-automata with one run. Close to the bottom of
our hierarchy, the regular languages appear. By definition we have the
inclusions F1D

m WK ⊆ FSD

m WK ⊆ FD

m WK ⊆ D

m WK on the path

between them, but as mentioned above, it is unclear, which of them are
proper. Somewhere on this path there must also lie the border between
decidability and undecidability of the emptiness problem, because for
regular languages it is decidable, even for context-free languages.

Open Problem

Secondly, we believe that D

1 WK is incomparable to the class of linear

languages.
There are examples for D

1 WK LIN, but no example for
D

1 WK ! LIN.

P. Leupold 5′ → 3′ Watson-Crick Automata

	Watson-Crick Automata
	5'3' Watson-Crick Automata
	Decidability
	Open Problems

