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Email: rudi@emcc.at, marian@emcc.at
and verlan@univ-paris12.fr

NCMA 2009



Overview

Introduction to Membrane Systems
(Generating) P Systems
Analyzing P Systems / P Automata

Register Machines

Communication P Automata
Communication Rules
Transition Modes

Communication P Automaton with Rule Control

Computational Completeness
Maximal Parallelism
(1-Restricted) Minimal Parallelism

Conclusion



Introduction to Membrane Systems

P Systems

I introduced by by Gheorghe Păun in 1998,

I inspired by cell functioning,

I multisets of objects evolve in parallel,

I in a hierarchical membrane structure.

PĂUN, Gh., Computing with membranes, J. of Computer and
System Sciences 61, 1 (2000), 108–143, and TUCS Research Report
208 (1998) (http://www.tucs.fi).

PĂUN, Gh., Membrane Computing. An Introduction,
Springer-Verlag, Berlin 2002.



Analyzing P Systems / P Automata
introduced 2002:

I Analyzing P Systems: R. Freund and M. Oswald;

I P Automata: E. Csuhaj-Varjú and Gy. Vaszil;

I act as acceptors rather than as generators;

I multiset is accepted if and only if the system/automaton halts.

CSUHAJ-VARJÚ, E., VASZIL, G., P automata or purely
communicating accepting P systems, in: Gh. Păun, G. Rozenberg,
A. Salomaa, C. Zandron (Eds.), Membrane Computing, International
Workshop, WMC-CdeA 2002, Curteă de Argeş, Romania, August
19–23, 2002, Revised Papers, Lecture Notes in Computer Science
2597, Springer, 2003, 219–233.

FREUND, R., OSWALD, M., A short note on analysing P systems
with antiport rules, Bulletin of the EATCS 78, 2002, 231–236.



Register Machines

A deterministic register machine is a construct M = (n,B, l0, lh, I ),
where

I n is the number of registers,

I B is a set of instruction labels,

I l0 is the start label,

I lh is the halt label (assigned to HALT only), and
I I is a set of instructions of the following forms:

I li : (ADD(r), lj) add 1 to register r , and then go to the
instruction labeled by lj ;

I li : (SUB(r), lj , lk) if register r is non-empty (non-zero),
then subtract 1 from it and go to the instruction labeled by lj ,
otherwise go to the instruction labeled by lk ;

I lh : HALT the halt instruction.



Register Machines – Computations

A register machine M accepts a set of (vectors of) natural
numbers in the following way:

I start with the instruction labeled by l0, with the first registers
containing the input as well as all other registers being empty,

I apply instructions as indicated by the labels and by the
contents of the registers,

I accept the input number (vector) if the HALT instruction is
reached.

It is known that in this way we can accept all recursively
enumerable sets of (vectors of) natural numbers.



Communication P Automata

Definition

A communication P automaton is a construct

Π = (O,T , µ,E ,w0,w1, ...,wd , i0,R) where

1. O is a finite alphabet of objects;

2. T ⊆ O is the alphabet of terminal objects;

3. µ is a membrane structure of d membranes with labels i ,
1 ≤ i ≤ d , the skin membrane always has the index 1; the
environment is indicated by 0;

4. E ⊆ O is the alphabet of objects occurring infinitely often in
the environment;

5. w0,w1, ...,wd initial multisets of the environment (w0 only
contains objects from O − E ) and membranes i , 1 ≤ i ≤ d ;

6. i0, 1 ≤ i0 ≤ d , is the input membrane;

7. R is a set of communication rules.



Communication Rules

Definition

Symport rules in R are of the form x [i→ [ix meaning that the
multiset x from outside membrane i is moved into the region inside
membrane i , or [ix → x [i meaning that the multiset x from inside
membrane i is moved into the region surrounding membrane i ,
with x ∈ O+ and 1 ≤ i ≤ d .

For symport rules x [1→ [1x , at least one symbol from x has to be
from O − E .

Definition

Antiport rules in R are of the form x [iy → y [ix with x , y ∈ O+ and
1 ≤ i ≤ d , meaning that the multiset x from outside membrane i
is exchanged with the multiset y in the region inside membrane i .



Weight of Communication Rules

Definition

The weight of a symport rule x [i→ [ix or [ix → x [i is defined as
|x |, The weight of an antiport rule x [iy → y [ix is defined as
max(|x |, |y |).

Definition

If we consider symport rules of any weight, we write sym∗; if we
only consider symport rules with weight ≤ n, we write symn; sym2

rules are also called minimal symport rules; finally, sym1 rules are
called uniport rules.
If we consider antiport rules of any weight, we write anti∗; if we
only consider antiport rules with weights ≤ n, we write antin; anti1
rules are also called minimal antiport rules.



Computations in Communication P Automata

A configuration C of Π is a (d + 1)-tuple of multisets over O
(u0, u1 . . . , ud); the initial configuration of Π, C0, is described by
w0,w1, ...,wd , i.e., C0 = (w0,w1, . . . ,wd).
The set of all multisets of rules from R applicable to C is denoted
by Appl (Π,C ).

To narrow the possible set of multisets of rules that can be applied
to a given configuration, we may apply different transition modes.
For the transition mode ϑ, the selection of multisets of rules
applicable to a configuration C is denoted by Appl (Π,C , ϑ).



Transition Modes

Definition

For the maximally parallel transition mode (max), we define

Appl (Π,C ,max) = {R ′ | R ′ ∈ Appl (Π,C ) and there is
no R ′′ ∈ Appl (Π,C ) with R ′′ % R ′} .

FREUND, R., VERLAN, S., A formal framework for P systems, in:
G. Eleftherakis, P. Kefalas, Gh. Păun (Eds.), Pre-proceedings of
Membrane Computing, International Workshop – WMC8,
Thessaloniki, Greece, 2007, 317–330.



Minimally Parallel Transition Mode

For the minimally parallel mode, we need an additional feature for
the set of rules R, i.e., we consider a partitioning of R into (not
necessarily disjoint) subsets R1 to Rh. Usually, this partitioning of
R may coincide with a specific assignment of the rules to the
membranes.
In an informal way, it can be described as applying multisets such
that from every set Rj , 1 ≤ j ≤ h, at least one rule – if possible –
has to be used:

Definition

For the minimally parallel transition mode (min) , we define

Appl (Π,C ,min) = {R ′ | R ′ ∈ Appl (Π,C ) and
there is no R ′′ ∈ Appl (Π,C )
with R ′′ % R ′, (R ′′ − R ′) ∩ Rj 6= ∅
and R ′ ∩ Rj = ∅ for some j , 1 ≤ j ≤ h} .



k-Restricted Minimally Parallel Transition Mode

Definition
For the k-restricted minimally parallel transition mode (mink), we define

Appl (Π,C ,mink) = {R ′ | R ′ ∈ Appl (Π,C ,min) and
|R ′ ∩ Rj | ≤ k for all j , 1 ≤ j ≤ h} .

CIOBANU, G., PAN, L., PĂUN, Gh., PÉREZ-JIMÉNEZ, M.J., P
systems with minimal parallelism, Theoretical Computer Science 378
(1) (2007), 117–130.

FREUND, R., VERLAN, S., (Tissue) P systems working in the
k-restricted minimally parallel derivation mode, in: E. Csuhaj-Varjú,
R. Freund, M. Oswald, K. Salomaa (Eds.), Proceedings of the
International Workshop on Computing with Biomolecules,
Österreichische Computer Gesellschaft, 2008, 43–52.



Communication P Automaton with Rule Control

Definition

A communication P automaton with rule control is a construct

Π′ =
(
O,T , µ,E ,w0,w1, ...,wd , i0,R,R

′
1, ...,R

′
m,K

)
where

1. Π = (O,T , µ,E ,w0,w1, ...,wd , i0,R) is a communication P
automaton with O,T , µ,E ,w0,w1, ...,wd , i0, and R being
defined as before;

2. R ′1, ...,R
′
m is a partitioning of R into (non-empty, but not

necessarily disjoint) subsets;

3. K ⊆ {0, 1}m is a set of control vectors controlling the
applicability of multisets of rules from R.



Computations

Definition

For some given transition mode ϑ,

Appl (Π′,C , ϑ) = {R ′ | R ′ ∈ Appl (Π,C , ϑ) and
there exists a vector v ∈ K such that
for all j with 1 ≤ j ≤ m it holds that
v (j) = 1 implies R ′ ∩ Rj 6= ∅ and
v (j) = 0 implies R ′ ∩ Rj = ∅ } .

A computation in Π′ checking for the acceptance of a multiset w
consists of a sequence of transitions starting from the initial
configuration C ′0 = (w ′0,w

′
1, . . . ,w

′
d) with w ′i = wi for 0 ≤ i ≤ m

and i 6= i0 and w ′i = wi + w for i = i0. A multiset w is accepted if
and only if there exists a halting computation of Π′ on C ′0.



Example

Let Π′ = (O,T , [1 ]1,E ,w0,w1, 1,R,R1,R2,R3,R4,R5,K ) be a
communication P automaton with rule control with

O = {a, b, p1, p2} ,
T = {a} ,
E = {b} ,
w0 = {} ,
w1 = {p1p2} ,
R = R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5;
R1 = {[1p1a→ p1a[1} ,
R2 = {[1p2a→ p2a[1} ,
R3 = {p1b[1→ [1p1b} ,
R4 = {p2[1→ [1p2} ,
R5 = {p1[1p2 → p2[1p1, p2[1p1 → p1[1p2} ,
K = {(1, 1, 0, 0, 0) , (1, 0, 0, 0, 0) , (0, 0, 1, 1, 0) , (0, 0, 0, 0, 1)} .



Example

In the maximally parallel mode, this automaton starts with the
multiset p1p2an for some n ≥ 0 (where an is the input) and first
applies the rules in R1 and R2 in parallel, thereby fulfilling
(1, 1, 0, 0, 0), exporting two symbols a from the skin membrane
into the environment; if only one symbol a is available, then only
[1p1a→ p1a[1 is applied thereby fulfilling (1, 0, 0, 0, 0). If both p1

and p2 have been moved out, then the rules in R3 and R4 are
executed at the same time according to (0, 0, 1, 1, 0); these two
steps have replaced two symbols a by one symbol b. The P
automaton Π′ repeats this process until at most one symbol a is
left in the skin membrane. If no a is left, i.e., n has been an even
number, the automaton terminates with having p1p2bn/2 in the
skin membrane. If one a is left, i.e., n has been an odd number,
then only R1 is applicable and the automaton ends up in an infinite
loop with p1[1p2 → p2[1p1 and p2[1p1 → p1[1p2.
The automaton therefore exactly accepts a2m for any m ≥ 0.



Communication P Automaton with Rule Control

Definition

For some given transition mode ϑ, by

NOlPdKm (ϑ) [rule types] (PsOlPdKm (ϑ) [rule types] )

we define the sets of (vectors of) natural numbers accepted by
communication P automata with rule control working in the
transition mode ϑ in d membranes using l objects and a
partitioning with m rule sets, allowing rules of the types specified
in [rule types]; if any of the numbers d , m, l are unbounded, we
write ∗ instead.



Computational Completeness

By simulating deterministic register machines, we can show that
communication P automata with rule control using only minimal
symport rules (sym2 rules) or minimal antiport rules (anti1 rules)
together with uniport rules (sym1 rules) in only one membrane are
computationally complete.

Theorem

For X ∈ {N,Ps},

XRE = XO∗P1K∗ (max) [sym2]

XO∗P1K∗ (max) [anti1, sym1] .



Computational Completeness – Proof Ideas
sym(2):

I pi : (ADD(r), pj)
[1pi → pi [1 and [1p′ip

′′
i → p′ip

′′
i [1

p′ipj [1→ [1p′ipj and p′′i ar [1→ [1p′′i ar

I pi : (SUB(r), pj , pk) ∈ I
[1p′′i pi → p′′i pi [1 and [1p′iar → p′iar [1
p′ipj [1→ [1p′ipj and p′′i [1→ [1p′′i or
p′′i [1→ [1p′′i and [1p′ip

′′′
i → p′ip

′′′
i [1

p′ipk [1→ [1p′ipk and p′′′i [1→ [1p′′′i
sym(1), anti(1):

I pi : (ADD(r), pj) ar [1pi → pi [1ar and pj [1→ [1pj

I pi : (SUB(r), pj , pk)
p′′i [1pi → pi [1p′′i and (eventually!) p′i [1ar → ar [1p′i
pj [1p′′i → p′′i [1pj and [1p′i → p′i [1
p′′′i [1p′′i → p′′i [1p′′′i and p′i [1→ [1p′i
pk [1p′′′i → p′′′i [1pk and [1p′i → p′i [1



Computational Completeness – Specific Proof Details

sym(2):
The “garbage” – the symbols p′i , p

′′
i , p
′′′
i – cannot be removed from

the skin membrane, which does not matter for the accepting case
of a P automaton; taking the same construction for generating P
systems, this is a challenging question - either we do not care about
these “garbage” symbols or we have to add an output membrane.

sym(1), anti(1):
Only the final label ph remains in the skin membrane when the P
automaton accepts by halting, hence, by adding the rule
[1ph → ph[1 we even end up with an empty skin membrane.
In other words, we could also consider these P automata with
minimal antiport and uniport rules as generating mechanisms
yielding their results as the numbers of objects in the skin
membrane, without having any additional garbage.



Computational Completeness with min, min1

Any partition of rules used for the control of the rules to be applied
together consists of only one rule; hence, we can use the same
partitioning of rules for the definition of minimal parallelism as well
as of 1-restricted minimal parallelism.

Corollary

For X ∈ {N,Ps} ,X ∈ {min,min1},

XRE = XO∗P1K∗ (Y ) [sym2]

XO∗P1K∗ (Y ) [anti1, sym1] .



Conclusion

Communication P automata with rule control can accept any
recursively enumerable set of (vectors of) natural numbers

I working in the transition modes max ,min,min1 with

I sym(2)-rules or sym(1),anti(1) rules

I in only one membrane.

Future Research

I consider the transition modes mink for k ≥ 2;

I consider other kinds of rules;

I investigate corresponding generating cases, especially check
whether “garbage” symbols can be avoided when using
sym(2) rules;

I . . . .



THANK YOU FOR YOUR ATTENTION!

The P Systems Web Page: http://ppage.psystems.eu.
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