
P E T E R Č E R N O

F R A N T I Š E K M R Á Z

Clearing Restarting Automata

About

� We propose a new restricted version of restarting
automata called Clearing Restarting Automata.

About

� We propose a new restricted version of restarting
automata called Clearing Restarting Automata.

� The new model can be learned very efficiently from
positive examples and its stronger version enables to
learn effectively a large class of languages.learn effectively a large class of languages.

About

� We propose a new restricted version of restarting
automata called Clearing Restarting Automata.

� The new model can be learned very efficiently from
positive examples and its stronger version enables to
learn effectively a large class of languages.learn effectively a large class of languages.

� We relate the class of languages recognized by
clearing restarting automata to the Chomsky
hierarchy.

Definition

� Let k be a positive integer.

Definition

� Let k be a positive integer.

� k-clearing restarting automaton (k-cl-RA-automaton
for short) is a couple M = (Σ, I), where:

Definition

� Let k be a positive integer.

� k-clearing restarting automaton (k-cl-RA-automaton
for short) is a couple M = (Σ, I), where:
� Σ is a finite nonempty alphabet, ¢, $ ∉ Σ.

Definition

� Let k be a positive integer.

� k-clearing restarting automaton (k-cl-RA-automaton
for short) is a couple M = (Σ, I), where:
� Σ is a finite nonempty alphabet, ¢, $ ∉ Σ.

I is a finite set of instructions (x, z, y), x ∊ LCk, y ∊ RCk, z ∊ Σ+,
LC = Σk ∪ ¢.Σ≤k-1

M = (Σ, I)
Σ ¢, $ ∉ Σ

� I is a finite set of instructions (x, z, y), x ∊ LCk, y ∊ RCk, z ∊ Σ+,
� left context LCk = Σk ∪ ¢.Σ≤k-1

� right context RCk = Σk ∪ Σ≤k-1.$

Definition

� Let k be a positive integer.

� k-clearing restarting automaton (k-cl-RA-automaton
for short) is a couple M = (Σ, I), where:
� Σ is a finite nonempty alphabet, ¢, $ ∉ Σ.

I is a finite set of instructions (x, z, y), x ∊ LCk, y ∊ RCk, z ∊ Σ+,
LC = Σk ∪ ¢.Σ≤k-1

M = (Σ, I)
Σ ¢, $ ∉ Σ

� I is a finite set of instructions (x, z, y), x ∊ LCk, y ∊ RCk, z ∊ Σ+,
� left context LCk = Σk ∪ ¢.Σ≤k-1

� right context RCk = Σk ∪ Σ≤k-1.$

� The special symbols: ¢ and $ are called sentinels.

Definition

� Let k be a positive integer.

� k-clearing restarting automaton (k-cl-RA-automaton
for short) is a couple M = (Σ, I), where:
� Σ is a finite nonempty alphabet, ¢, $ ∉ Σ.

I is a finite set of instructions (x, z, y), x ∊ LCk, y ∊ RCk, z ∊ Σ+,
LC = Σk ∪ ¢.Σ≤k-1

M = (Σ, I)
Σ ¢, $ ∉ Σ

� I is a finite set of instructions (x, z, y), x ∊ LCk, y ∊ RCk, z ∊ Σ+,
� left context LCk = Σk ∪ ¢.Σ≤k-1

� right context RCk = Σk ∪ Σ≤k-1.$

� The special symbols: ¢ and $ are called sentinels.

� The width of the instruction i = (x, z, y) is |i| = |xzy|.

Definition

� A word w = uzv can be rewritten to uv (uzv ⊢M uv) if
and only if there exist an instruction i = (x, z, y) ∊ I
such that:
� x ⊒ ¢.u (x is a suffix of ¢.u)

� y ⊑ v.$ (y is a prefix of v.$)

x ⊒ ¢.u x ¢.u

� y ⊑ v.$ (y is a prefix of v.$)

Definition

� A word w = uzv can be rewritten to uv (uzv ⊢M uv) if
and only if there exist an instruction i = (x, z, y) ∊ I
such that:
� x ⊒ ¢.u (x is a suffix of ¢.u)

� y ⊑ v.$ (y is a prefix of v.$)

w w ⊢*
M λ ⊢*

M

⊢

x ⊒ ¢.u x ¢.u

� y ⊑ v.$ (y is a prefix of v.$)

� A word w is accepted if and only if w ⊢*
M λ where ⊢*

M

is reflexive and transitive closure of ⊢M .

Definition

� A word w = uzv can be rewritten to uv (uzv ⊢M uv) if
and only if there exist an instruction i = (x, z, y) ∊ I
such that:
� x ⊒ ¢.u (x is a suffix of ¢.u)

� y ⊑ v.$ (y is a prefix of v.$)

w w ⊢*
M λ ⊢*

M

⊢

x ⊒ ¢.u x ¢.u

� y ⊑ v.$ (y is a prefix of v.$)

� A word w is accepted if and only if w ⊢*
M λ where ⊢*

M

is reflexive and transitive closure of ⊢M .

� The k-cl-RA-automaton M recognizes the language
L(M) = {w ∊ Σ* | M accepts w}.

Definition

� By cl-RA we will denote the class of all clearing
restarting automata.

Definition

� By cl-RA we will denote the class of all clearing
restarting automata.

� ℒ(k-cl-RA) denotes the class of all languages accepted
by k-cl-RA-automata.

Definition

� By cl-RA we will denote the class of all clearing
restarting automata.

� ℒ(k-cl-RA) denotes the class of all languages accepted
by k-cl-RA-automata.

Similarly ℒ(cl-RA) denotes the class of all languages
cl-RA

ℒ(k-cl-RA)
k-cl-RA

� Similarly ℒ(cl-RA) denotes the class of all languages
accepted by cl-RA-automata.

Definition

� By cl-RA we will denote the class of all clearing
restarting automata.

� ℒ(k-cl-RA) denotes the class of all languages accepted
by k-cl-RA-automata.

Similarly ℒ(cl-RA) denotes the class of all languages
cl-RA

ℒ(k-cl-RA)
k-cl-RA

� Similarly ℒ(cl-RA) denotes the class of all languages
accepted by cl-RA-automata.

� ℒ(cl-RA) = ⋃k≥1ℒ(k-cl-RA).

Definition

� By cl-RA we will denote the class of all clearing
restarting automata.

� ℒ(k-cl-RA) denotes the class of all languages accepted
by k-cl-RA-automata.

Similarly ℒ(cl-RA) denotes the class of all languages
cl-RA

ℒ(k-cl-RA)
k-cl-RA

� Similarly ℒ(cl-RA) denotes the class of all languages
accepted by cl-RA-automata.

� ℒ(cl-RA) = ⋃k≥1ℒ(k-cl-RA).

� Note: For every cl-RA M: λ ⊢*
M λ hence λ ∊ L(M). If

we say that cl-RA M recognizes a language L, we
mean that L(M) = L ∪ {λ}.

Motivation

� This model was inspired by the Associative
Language Descriptions (ALD) model:
� By Alessandra Cherubini, Stefano Crespi-Reghizzi, Matteo

Pradella, Pierluigi San Pietro.

� See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html� See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html

Motivation

� This model was inspired by the Associative
Language Descriptions (ALD) model:
� By Alessandra Cherubini, Stefano Crespi-Reghizzi, Matteo

Pradella, Pierluigi San Pietro.

� See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html

cl-RA

� See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html

� The simplicity of cl-RA model implies that the
investigation of its properties is not so difficult and
also the learning of languages is easy.

Motivation

� This model was inspired by the Associative
Language Descriptions (ALD) model:
� By Alessandra Cherubini, Stefano Crespi-Reghizzi, Matteo

Pradella, Pierluigi San Pietro.

� See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html

cl-RA

� See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html

� The simplicity of cl-RA model implies that the
investigation of its properties is not so difficult and
also the learning of languages is easy.

� Another important advantage of this model is that
the instructions are human readable.

Example

� Language L = {anbn | n ≥ 0}.

Example

� Language L = {anbn | n ≥ 0}.

� Can be recognized by the 1-cl-RA M = ({a, b}, I),
where the instructions I are:
� R1 = (a, ab, b)

R2 = (¢, ab, $)

I
R1 = (a, ab, b)

� R2 = (¢, ab, $)

Example

� Language L = {anbn | n ≥ 0}.

� Can be recognized by the 1-cl-RA M = ({a, b}, I),
where the instructions I are:
� R1 = (a, ab, b)

R2 = (¢, ab, $)

I
R1 = (a, ab, b)

� R2 = (¢, ab, $)

� For instance:
� aaaabbbb ⊢R1 aaabbb

Example

� Language L = {anbn | n ≥ 0}.

� Can be recognized by the 1-cl-RA M = ({a, b}, I),
where the instructions I are:
� R1 = (a, ab, b)

R2 = (¢, ab, $)

I
R1 = (a, ab, b)

� R2 = (¢, ab, $)

� For instance:
� aaaabbbb ⊢R1 aaabbb ⊢R1 aabb

Example

� Language L = {anbn | n ≥ 0}.

� Can be recognized by the 1-cl-RA M = ({a, b}, I),
where the instructions I are:
� R1 = (a, ab, b)

R2 = (¢, ab, $)

I
R1 = (a, ab, b)

� R2 = (¢, ab, $)

� For instance:
� aaaabbbb ⊢R1 aaabbb ⊢R1 aabb ⊢R1 ab

Example

� Language L = {anbn | n ≥ 0}.

� Can be recognized by the 1-cl-RA M = ({a, b}, I),
where the instructions I are:
� R1 = (a, ab, b)

R2 = (¢, ab, $)

I
R1 = (a, ab, b)

� R2 = (¢, ab, $)

� For instance:
� aaaabbbb ⊢R1 aaabbb ⊢R1 aabb ⊢R1 ab ⊢R2 λ .

� Now we see that the word aaaabbbb is accepted
because aaaabbbb ⊢*

M λ.

Some Theorems

� Error preserving property: Let M = (Σ, I) be a cl-RA-
automaton and u, v be two words from Σ* . If u ⊢*

M v
and u ∉ L(M), then v ∉ L(M).
� Proof. v ∊ L(M) ⇒ v ⊢*

M λ ⇒ u ⊢*
M v ⊢*

M λ ⇒ u ∊ L(M). ∎

Some Theorems

� Error preserving property: Let M = (Σ, I) be a cl-RA-
automaton and u, v be two words from Σ* . If u ⊢*

M v
and u ∉ L(M), then v ∉ L(M).
� Proof. v ∊ L(M) ⇒ v ⊢*

M λ ⇒ u ⊢*
M v ⊢*

M λ ⇒ u ∊ L(M). ∎

� Observation: For each finite L ⊆ Σ* there exist 1-cl-
RA M L(M) = L ∪ {λ}

u ∉ L(M) v ∉ L(M)
v ∊ L(M) ⇒ v ⊢*

M λ ⇒ u ⊢*
M v ⊢*

M λ ⇒ u ∊ L(M) ∎

� Observation: For each finite L ⊆ Σ* there exist 1-cl-
RA-automaton M such that L(M) = L ∪ {λ}.
� Proof. Suppose L = {w1, …, wn}.

Consider I = {(¢, w1, $), …, (¢, wn, $)}. ∎

Some Theorems

� Theorem: ℒ(k-cl-RA) ⊂ ℒ((k+1)-cl-RA), for all k ≥ 1.
� Note: The following language: { (ckack)n(ckbck)n | n ≥ 0 }

belongs to ℒ((k+1)-cl-RA) - ℒ(k-cl-RA).

Some Theorems

� Theorem: ℒ(k-cl-RA) ⊂ ℒ((k+1)-cl-RA), for all k ≥ 1.
� Note: The following language: { (ckack)n(ckbck)n | n ≥ 0 }

belongs to ℒ((k+1)-cl-RA) - ℒ(k-cl-RA).

� Theorem: For each regular language L ⊆ Σ* there
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.

L ⊆ Σ*
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.

Some Theorems

� Theorem: ℒ(k-cl-RA) ⊂ ℒ((k+1)-cl-RA), for all k ≥ 1.
� Note: The following language: { (ckack)n(ckbck)n | n ≥ 0 }

belongs to ℒ((k+1)-cl-RA) - ℒ(k-cl-RA).

� Theorem: For each regular language L ⊆ Σ* there
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.

L ⊆ Σ*
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.
� Proof. Based on pumping lemma for regular languages.

Some Theorems

� Theorem: ℒ(k-cl-RA) ⊂ ℒ((k+1)-cl-RA), for all k ≥ 1.
� Note: The following language: { (ckack)n(ckbck)n | n ≥ 0 }

belongs to ℒ((k+1)-cl-RA) - ℒ(k-cl-RA).

� Theorem: For each regular language L ⊆ Σ* there
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.

L ⊆ Σ*
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.
� Proof. Based on pumping lemma for regular languages.

� For each z ∊ Σ*, |z|=n there exist u, v, w such that |v|≥1 and
δ(q0, uv) = δ(q0, u); the word v can be crossed out.

Some Theorems

� Theorem: ℒ(k-cl-RA) ⊂ ℒ((k+1)-cl-RA), for all k ≥ 1.
� Note: The following language: { (ckack)n(ckbck)n | n ≥ 0 }

belongs to ℒ((k+1)-cl-RA) - ℒ(k-cl-RA).

� Theorem: For each regular language L ⊆ Σ* there
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.

L ⊆ Σ*
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.
� Proof. Based on pumping lemma for regular languages.

� For each z ∊ Σ*, |z|=n there exist u, v, w such that |v|≥1 and
δ(q0, uv) = δ(q0, u); the word v can be crossed out.

� We add corresponding instruction iz = (¢.u, v, w).

Some Theorems

� Theorem: ℒ(k-cl-RA) ⊂ ℒ((k+1)-cl-RA), for all k ≥ 1.
� Note: The following language: { (ckack)n(ckbck)n | n ≥ 0 }

belongs to ℒ((k+1)-cl-RA) - ℒ(k-cl-RA).

� Theorem: For each regular language L ⊆ Σ* there
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.

L ⊆ Σ*
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.
� Proof. Based on pumping lemma for regular languages.

� For each z ∊ Σ*, |z|=n there exist u, v, w such that |v|≥1 and
δ(q0, uv) = δ(q0, u); the word v can be crossed out.

� We add corresponding instruction iz = (¢.u, v, w).

� For each accepted z ∊ Σ<n - {λ} we add instruction iz = (¢, z, $).

Some Theorems

� Theorem: The language L1 = {ancbn | n ≥ 0} ∪ {λ} is
not recognized by any cl-RA-automaton.

Some Theorems

� Theorem: The language L1 = {ancbn | n ≥ 0} ∪ {λ} is
not recognized by any cl-RA-automaton.
� Note: L1 can be recognized by a simple RRWW-automaton.

Moreover L1 is a context-free language, thus we get the
following corollary:

L1

following corollary:

� Corollary:
� ℒ(cl-RA) ⊂ ℒ(RRWW).

� CFL - ℒ(cl-RA) ≠ ∅.

Some Theorems

� Let L2 = {anbn | n≥0} and L3 = {anb2n | n≥0} be two
sample languages. Apparently both L2 and L3 are
recognized by 1-cl-RA-automata.

Some Theorems

� Let L2 = {anbn | n≥0} and L3 = {anb2n | n≥0} be two
sample languages. Apparently both L2 and L3 are
recognized by 1-cl-RA-automata.

� Theorem: Languages L2 ∪ L3 and L2 . L3 are not
recognized by any cl-RA-automaton.

1-cl-RA

L2 ∪ L3 L2 . L3

recognized by any cl-RA-automaton.

Some Theorems

� Let L2 = {anbn | n≥0} and L3 = {anb2n | n≥0} be two
sample languages. Apparently both L2 and L3 are
recognized by 1-cl-RA-automata.

� Theorem: Languages L2 ∪ L3 and L2 . L3 are not
recognized by any cl-RA-automaton.

ℒ(cl-RA)

1-cl-RA

L2 ∪ L3 L2 . L3

recognized by any cl-RA-automaton.

� Corollary: ℒ(cl-RA) is not closed under union,
concatenation, and homomorphism.
� For homomorphism use {anbn | n≥0} ∪ {cnd2n | n≥0} and

homomorphism defined as: a ↦ a, b ↦ b, c ↦ a, d ↦ b. ∎

Some Theorems

� It is easy to see that each of the following languages:
� L4 = {ancbn | n ≥ 0} ∪ {ambm | m ≥ 0}

� L5 = {ancbm | n, m ≥ 0} ∪ {λ}

� L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.
L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.

Some Theorems

� It is easy to see that each of the following languages:
� L4 = {ancbn | n ≥ 0} ∪ {ambm | m ≥ 0}

� L5 = {ancbm | n, m ≥ 0} ∪ {λ}

� L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.

ℒ(cl-RA)

L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.

� Corollary: ℒ(cl-RA) is not closed under:
� intersection: L1 = L4 ∩ L5 .

Some Theorems

� It is easy to see that each of the following languages:
� L4 = {ancbn | n ≥ 0} ∪ {ambm | m ≥ 0}

� L5 = {ancbm | n, m ≥ 0} ∪ {λ}

� L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.

ℒ(cl-RA)

L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.

� Corollary: ℒ(cl-RA) is not closed under:
� intersection: L1 = L4 ∩ L5 .

� intersection with regular language: L5 is regular.

Some Theorems

� It is easy to see that each of the following languages:
� L4 = {ancbn | n ≥ 0} ∪ {ambm | m ≥ 0}

� L5 = {ancbm | n, m ≥ 0} ∪ {λ}

� L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.

ℒ(cl-RA)

L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.

� Corollary: ℒ(cl-RA) is not closed under:
� intersection: L1 = L4 ∩ L5 .

� intersection with regular language: L5 is regular.

� set difference: L1 = (L4 - L6) ∪ {λ} .

Parentheses

� The following instruction of 1-cl-RA M is enough for
recognizing the language of correct parentheses:

� (λ, (), λ)

Parentheses

� The following instruction of 1-cl-RA M is enough for
recognizing the language of correct parentheses:

� (λ, (), λ)
� Note: This instruction represents a set of instructions:

({¢}∪Σ, (), Σ∪{$}), where Σ = {(,)} and

(A, w, B) = {(a, w, b) | a∊A, b∊B}

(λ, (), λ)

� ({¢}∪Σ, (), Σ∪{$}), where Σ = {(,)} and

� (A, w, B) = {(a, w, b) | a∊A, b∊B}.

Parentheses

� The following instruction of 1-cl-RA M is enough for
recognizing the language of correct parentheses:

� (λ, (), λ)
� Note: This instruction represents a set of instructions:

({¢}∪Σ, (), Σ∪{$}), where Σ = {(,)} and

(A, w, B) = {(a, w, b) | a∊A, b∊B}

(λ, (), λ)

� ({¢}∪Σ, (), Σ∪{$}), where Σ = {(,)} and

� (A, w, B) = {(a, w, b) | a∊A, b∊B}.

� Note: We use the following notation for the (A, w, B):

A w B

Arithmetic Expressions

� Suppose that we want to check correctness of arithmetic
expressions over the alphabet Σ = {α, +, *, (,)}.

Arithmetic Expressions

� Suppose that we want to check correctness of arithmetic
expressions over the alphabet Σ = {α, +, *, (,)}.

� For example α+(α*α+α) is correct, α*+α is not.

Arithmetic Expressions

� Suppose that we want to check correctness of arithmetic
expressions over the alphabet Σ = {α, +, *, (,)}.

� For example α+(α*α+α) is correct, α*+α is not.

� The priority of the operations is considered.

Arithmetic Expressions

� Suppose that we want to check correctness of arithmetic
expressions over the alphabet Σ = {α, +, *, (,)}.

� For example α+(α*α+α) is correct, α*+α is not.

� The priority of the operations is considered.

� The following 1-cl-RA-automaton is sufficient:� The following 1-cl-RA-automaton is sufficient:

¢
+
(

α+
()+

α
(

¢
+
*
(

α*
()*

α
(

α
)

+α
+()

$
+
)

α
)

*α
*()

$
+
*
)

¢
α
()

$

(
α
()

)

Arithmetic Expressions - Example

Expression Instruction

α*α + ((α + α) + (α + α*α))*α (¢, α*, α)

α + ((α + α) + (α + α*α))*α (α, +α,))

α + ((α) + (α + α*α))*α (), *α, $)

α + ((α) + (α + α*α)) (+, α*, α)

α + ((α) + (α + α)) ((, α+, α)α + ((α) + (α + α)) ((, α+, α)

α + ((α) + (α)) ((, α,))

α + (() + (α)) ((, ()+, ()

α + ((α)) ((, α,))

α + (()) ((, (),))

α + () (¢, α+, ()

() (¢, (), $)

λ accept

Nondeterminism

� Assume the following instructions:
� R1 = (bb, a, bbbb)

� R2 = (bb, bb, $)

� R3 = (¢, cbb, $)

and the word: cbbabbbb.
R3 = (¢, cbb, $)

and the word: cbbabbbb.

Nondeterminism

� Assume the following instructions:
� R1 = (bb, a, bbbb)

� R2 = (bb, bb, $)

� R3 = (¢, cbb, $)

and the word: cbbabbbb. Then:
cbbabbbb ⊢R1 cbbbbbb ⊢R2 cbbbb ⊢R2 cbb ⊢R3 λ

R3 = (¢, cbb, $)

and the word: cbbabbbb. Then:
� cbbabbbb ⊢R1 cbbbbbb ⊢R2 cbbbb ⊢R2 cbb ⊢R3 λ.

Nondeterminism

� Assume the following instructions:
� R1 = (bb, a, bbbb)

� R2 = (bb, bb, $)

� R3 = (¢, cbb, $)

and the word: cbbabbbb. Then:
cbbabbbb ⊢R1 cbbbbbb ⊢R2 cbbbb ⊢R2 cbb ⊢R3 λ

R3 = (¢, cbb, $)

and the word: cbbabbbb. Then:
� cbbabbbb ⊢R1 cbbbbbb ⊢R2 cbbbb ⊢R2 cbb ⊢R3 λ.

� But if we have started with R2:
� cbbabbbb ⊢R2 cbbabb

then it would not be possible to continue.

Nondeterminism

� Assume the following instructions:
� R1 = (bb, a, bbbb)

� R2 = (bb, bb, $)

� R3 = (¢, cbb, $)

and the word: cbbabbbb. Then:
cbbabbbb ⊢R1 cbbbbbb ⊢R2 cbbbb ⊢R2 cbb ⊢R3 λ

R3 = (¢, cbb, $)

and the word: cbbabbbb. Then:
� cbbabbbb ⊢R1 cbbbbbb ⊢R2 cbbbb ⊢R2 cbb ⊢R3 λ.

� But if we have started with R2:
� cbbabbbb ⊢R2 cbbabb

then it would not be possible to continue.

� ⇒ The order of used instructions is important!

Greibach’s Hardest CFL

� As we have seen not all context-free languages are
recognized by a cl-RA-automaton.

Greibach’s Hardest CFL

� As we have seen not all context-free languages are
recognized by a cl-RA-automaton.

� We still can characterize CFL using clearing
restarting automata, inverse homomorphism and
Greibach’s hardest context-free language.Greibach’s hardest context-free language.

Greibach’s Hardest CFL

� Greibach constructed a context-free language H, such
that:
� Any context-free language can be parsed in whatever time or

space it takes to recognize H.

Greibach’s Hardest CFL

� Greibach constructed a context-free language H, such
that:
� Any context-free language can be parsed in whatever time or

space it takes to recognize H.

� Any context-free language L can be obtained from H by an

L φ L = φ (H)

H

� Any context-free language L can be obtained from H by an
inverse homomorphism. That is, for each context-free
language L, there exists a homomorphism φ: L = φ-1(H).

Greibach’s Hardest CFL

� By S. A. Greibach, definition from Section 10.5 of M.
Harrison, Introduction to Formal Language
Theory, Addison-Wesley, Reading, MA, 1978.

� Let Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ.

Greibach’s Hardest CFL

� By S. A. Greibach, definition from Section 10.5 of M.
Harrison, Introduction to Formal Language
Theory, Addison-Wesley, Reading, MA, 1978.

� Let Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ.

Let D2 be Semi-Dyck language on {a1, a2, a1, a2}
S → λ | SS | a Sa | a Sa

Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ

� Let D2 be Semi-Dyck language on {a1, a2, a1, a2}
generated by the grammar: S → λ | SS | a1Sa1 | a2Sa2 .

Greibach’s Hardest CFL

� By S. A. Greibach, definition from Section 10.5 of M.
Harrison, Introduction to Formal Language
Theory, Addison-Wesley, Reading, MA, 1978.

� Let Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ.

Let D2 be Semi-Dyck language on {a1, a2, a1, a2}
S → λ | SS | a Sa | a Sa

Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ

� Let D2 be Semi-Dyck language on {a1, a2, a1, a2}
generated by the grammar: S → λ | SS | a1Sa1 | a2Sa2 .

� Then H = {λ} ∪ {∏i=1..nxicyiczid | n ≥ 1, y1y2…yn ∊ #D2,
xi, zi ∊ Σ*},
� y1 ∊ # . {a1, a2, a1, a2}* ,

� yi ∊ {a1, a2, a1, a2}* for all i > 1.

Greibach’s Hardest CFL

� Theorem: H is not accepted by any cl-RA-automaton.

Greibach’s Hardest CFL

� Theorem: H is not accepted by any cl-RA-automaton.

� Cherubini et. al defined H using associative
language description (ALD) which uses one
auxiliary symbol.

(in Associative language descriptions, Theoretical (in Associative language descriptions, Theoretical
Computer Science, 270 (2002), 463-491)

Greibach’s Hardest CFL

� Theorem: H is not accepted by any cl-RA-automaton.

� Cherubini et. al defined H using associative
language description (ALD) which uses one
auxiliary symbol.

(in Associative language descriptions, Theoretical (in Associative language descriptions, Theoretical
Computer Science, 270 (2002), 463-491)

� So we will slightly extend the definition of cl-RA-
automata in order to be able to recognize more
languages including H.

Definition

� Let k be a positive integer.

Definition

� Let k be a positive integer.

� k-Δ-clearing restarting automaton (k-Δcl-RA-
automaton for short) is a couple M = (Σ, I), where:

Definition

� Let k be a positive integer.

� k-Δ-clearing restarting automaton (k-Δcl-RA-
automaton for short) is a couple M = (Σ, I), where:
� Σ is a finite nonempty alphabet, ¢, $, Δ ∉ Σ , Γ = Σ ∪ {Δ}.

Definition

� Let k be a positive integer.

� k-Δ-clearing restarting automaton (k-Δcl-RA-
automaton for short) is a couple M = (Σ, I), where:
� Σ is a finite nonempty alphabet, ¢, $, Δ ∉ Σ , Γ = Σ ∪ {Δ}.

I is a finite set of instructions of the following forms:
(x, z → λ, y)

M = (Σ, I)
Σ ¢, $, Δ ∉ Σ , Γ = Σ ∪ {Δ}

� I is a finite set of instructions of the following forms:
� (1) (x, z → λ, y)

� (2) (x, z → Δ, y)

Definition

� Let k be a positive integer.

� k-Δ-clearing restarting automaton (k-Δcl-RA-
automaton for short) is a couple M = (Σ, I), where:
� Σ is a finite nonempty alphabet, ¢, $, Δ ∉ Σ , Γ = Σ ∪ {Δ}.

I is a finite set of instructions of the following forms:
(x, z → λ, y)

M = (Σ, I)
Σ ¢, $, Δ ∉ Σ , Γ = Σ ∪ {Δ}

� I is a finite set of instructions of the following forms:
� (1) (x, z → λ, y)

� (2) (x, z → Δ, y)

� where x ∊ LCk, y ∊ RCk, z ∊ Γ+.
� left context LCk = Γk ∪ ¢. Γ≤k-1

� right context RCk = Γk ∪ Γ≤k-1.$

Definition

� A word w = uzv can be rewritten to usv (uzv ⊢M usv)
if and only if there exist an instruction i = (x, z → s, y)
∊ I such that:
� x ⊒ ¢.u (x is a suffix of ¢.u)

� y ⊑ v.$ (y is a prefix of v.$)

∊ I
x ⊒ ¢.u x ¢.u

� y ⊑ v.$ (y is a prefix of v.$)

Definition

� A word w = uzv can be rewritten to usv (uzv ⊢M usv)
if and only if there exist an instruction i = (x, z → s, y)
∊ I such that:
� x ⊒ ¢.u (x is a suffix of ¢.u)

� y ⊑ v.$ (y is a prefix of v.$)

w w ⊢*
M λ ⊢*

M

⊢

∊ I
x ⊒ ¢.u x ¢.u

� y ⊑ v.$ (y is a prefix of v.$)

� A word w is accepted if and only if w ⊢*
M λ where ⊢*

M

is reflexive and transitive closure of ⊢M .

Definition

� A word w = uzv can be rewritten to usv (uzv ⊢M usv)
if and only if there exist an instruction i = (x, z → s, y)
∊ I such that:
� x ⊒ ¢.u (x is a suffix of ¢.u)

� y ⊑ v.$ (y is a prefix of v.$)

w w ⊢*
M λ ⊢*

M

⊢

∊ I
x ⊒ ¢.u x ¢.u

� y ⊑ v.$ (y is a prefix of v.$)

� A word w is accepted if and only if w ⊢*
M λ where ⊢*

M

is reflexive and transitive closure of ⊢M .

� The k-Δcl-RA-automaton M recognizes the language
L(M) = {w ∊ Σ* | M accepts w}.

Definition

� By Δcl-RA we will denote the class of all Δ- clearing
restarting automata.

Definition

� By Δcl-RA we will denote the class of all Δ- clearing
restarting automata.

� ℒ(k-Δcl-RA) denotes the class of all languages
accepted by k-Δcl-RA-automata.

Definition

� By Δcl-RA we will denote the class of all Δ- clearing
restarting automata.

� ℒ(k-Δcl-RA) denotes the class of all languages
accepted by k-Δcl-RA-automata.

Similarly ℒ(Δcl-RA) denotes the class of all languages
Δcl-RA

ℒ(k-Δcl-RA)
k-Δcl-RA

� Similarly ℒ(Δcl-RA) denotes the class of all languages
accepted by Δcl-RA-automata.

Definition

� By Δcl-RA we will denote the class of all Δ- clearing
restarting automata.

� ℒ(k-Δcl-RA) denotes the class of all languages
accepted by k-Δcl-RA-automata.

Similarly ℒ(Δcl-RA) denotes the class of all languages
Δcl-RA

ℒ(k-Δcl-RA)
k-Δcl-RA

� Similarly ℒ(Δcl-RA) denotes the class of all languages
accepted by Δcl-RA-automata.

� ℒ(Δcl-RA) = ⋃k≥1ℒ(k-Δcl-RA).

Definition

� By Δcl-RA we will denote the class of all Δ- clearing
restarting automata.

� ℒ(k-Δcl-RA) denotes the class of all languages
accepted by k-Δcl-RA-automata.

Similarly ℒ(Δcl-RA) denotes the class of all languages
Δcl-RA

ℒ(k-Δcl-RA)
k-Δcl-RA

� Similarly ℒ(Δcl-RA) denotes the class of all languages
accepted by Δcl-RA-automata.

� ℒ(Δcl-RA) = ⋃k≥1ℒ(k-Δcl-RA).

� Note: For every Δcl-RA M: λ ⊢*
M λ hence λ ∊ L(M). If

we say that Δcl-RA M recognizes a language L, we
mean that L(M) = L ∪ {λ}.

Example

� Language L = {ancbn | n ≥ 0}.

Example

� Language L = {ancbn | n ≥ 0}.

� Can be recognized by the 1-Δcl-RA M = ({a, b, c}, I),
where the instructions I are:
� Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

I
Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

� RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

Example

� Language L = {ancbn | n ≥ 0}.

� Can be recognized by the 1-Δcl-RA M = ({a, b, c}, I),
where the instructions I are:
� Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

I
Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

� RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

� For instance:
� aaacbbb ⊢Rc1 aaΔbb

Example

� Language L = {ancbn | n ≥ 0}.

� Can be recognized by the 1-Δcl-RA M = ({a, b, c}, I),
where the instructions I are:
� Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

I
Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

� RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

� For instance:
� aaacbbb ⊢Rc1 aaΔbb ⊢RΔ1 aΔb

Example

� Language L = {ancbn | n ≥ 0}.

� Can be recognized by the 1-Δcl-RA M = ({a, b, c}, I),
where the instructions I are:
� Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

I
Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

� RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

� For instance:
� aaacbbb ⊢Rc1 aaΔbb ⊢RΔ1 aΔb ⊢RΔ2 λ .

� Now we see that the word aaacbbb is accepted
because aaacbbb ⊢*

M λ.

Back to Greibach’s Hardest CFL

� Theorem: Greibach’s Hardest CFL H is recognized by
a 1-Δcl-RA-automaton.

Back to Greibach’s Hardest CFL

� Theorem: Greibach’s Hardest CFL H is recognized by
a 1-Δcl-RA-automaton.
� Idea. Suppose that we have w ∊ H:

w = ¢ x1cy1cz1d x2cy2cz2d… xncyncznd $

Back to Greibach’s Hardest CFL

� Theorem: Greibach’s Hardest CFL H is recognized by
a 1-Δcl-RA-automaton.
� Idea. Suppose that we have w ∊ H:

w = ¢ x1cy1cz1d x2cy2cz2d… xncyncznd $

� In the first phase we start with deleting letters (from the
Σ = {a1, a2, a1, a2, #, c} ¢

d

w = ¢ x1cy1cz1d x2cy2cz2d… xncyncznd $

� In the first phase we start with deleting letters (from the
alphabet Σ = {a1, a2, a1, a2, #, c}) from the right side of ¢ and
from the left and right sides of the letters d.

Back to Greibach’s Hardest CFL

� Theorem: Greibach’s Hardest CFL H is recognized by
a 1-Δcl-RA-automaton.
� Idea. Suppose that we have w ∊ H:

w = ¢ x1cy1cz1d x2cy2cz2d… xncyncznd $

� In the first phase we start with deleting letters (from the
Σ = {a1, a2, a1, a2, #, c} ¢

d

w = ¢ x1cy1cz1d x2cy2cz2d… xncyncznd $

� In the first phase we start with deleting letters (from the
alphabet Σ = {a1, a2, a1, a2, #, c}) from the right side of ¢ and
from the left and right sides of the letters d.

� As soon as we think that we have the following word:

¢ cy1cd cy2cd… cyncd $, we introduce the Δ symbols:

¢ Δy1Δy2Δ… ΔynΔ $

Back to Greibach’s Hardest CFL

� Theorem: Greibach’s Hardest CFL H is recognized by
a 1-Δcl-RA-automaton.
� Idea. Suppose that we have w ∊ H:

w = ¢ x1cy1cz1d x2cy2cz2d… xncyncznd $

� In the first phase we start with deleting letters (from the
Σ = {a1, a2, a1, a2, #, c} ¢

d

w = ¢ x1cy1cz1d x2cy2cz2d… xncyncznd $

� In the first phase we start with deleting letters (from the
alphabet Σ = {a1, a2, a1, a2, #, c}) from the right side of ¢ and
from the left and right sides of the letters d.

� As soon as we think that we have the following word:

¢ cy1cd cy2cd… cyncd $, we introduce the Δ symbols:

¢ Δy1Δy2Δ… ΔynΔ $

� In the second phase we check if y1y2…yn ∊ #D2 .

Instructions recognizing Hardest CFL H

� Suppose Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ, Γ = Σ ∪ {d, Δ}.

Instructions for the first phase: Instructions for the second phase:

(1) (¢, Σ → λ, Σ)
(2) (Σ, Σ → λ, d)
(3) (d, Σ → λ, Σ)
(4) (¢, c → Δ, Σ ∪ {Δ})
(5) (Σ ∪ {Δ}, cdc → Δ, Σ ∪ {Δ})

(7) (Γ, a1a1 → λ, Γ – {#})
(8) (Γ, a2a2 → λ, Γ – {#})
(9) (Γ, a1Δa1 → Δ, Γ – {#})
(10) (Γ, a2Δa2 → Δ, Γ – {#})
(11) (Σ – {c}, Δ → λ, Δ)

(2) (Σ, Σ → λ, d)
(3) (d, Σ → λ, Σ)
(4) (¢, c → Δ, Σ ∪ {Δ})
(5) (Σ ∪ {Δ}, cdc → Δ, Σ ∪ {Δ})
(6) (Σ ∪ {Δ}, cd → Δ, $)

(8) (Γ, a2a2 → λ, Γ – {#})
(9) (Γ, a1Δa1 → Δ, Γ – {#})
(10) (Γ, a2Δa2 → Δ, Γ – {#})
(11) (Σ – {c}, Δ → λ, Δ)
(12) (¢, Δ#Δ → λ, $)

Instructions recognizing Hardest CFL H

� Suppose Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ, Γ = Σ ∪ {d, Δ}.

Instructions for the first phase: Instructions for the second phase:

(1) (¢, Σ → λ, Σ)
(2) (Σ, Σ → λ, d)
(3) (d, Σ → λ, Σ)
(4) (¢, c → Δ, Σ ∪ {Δ})
(5) (Σ ∪ {Δ}, cdc → Δ, Σ ∪ {Δ})

(7) (Γ, a1a1 → λ, Γ – {#})
(8) (Γ, a2a2 → λ, Γ – {#})
(9) (Γ, a1Δa1 → Δ, Γ – {#})
(10) (Γ, a2Δa2 → Δ, Γ – {#})
(11) (Σ – {c}, Δ → λ, Δ)

� In fact, there is no such thing as a first phase or a
second phase. We have only instructions.

(2) (Σ, Σ → λ, d)
(3) (d, Σ → λ, Σ)
(4) (¢, c → Δ, Σ ∪ {Δ})
(5) (Σ ∪ {Δ}, cdc → Δ, Σ ∪ {Δ})
(6) (Σ ∪ {Δ}, cd → Δ, $)

(8) (Γ, a2a2 → λ, Γ – {#})
(9) (Γ, a1Δa1 → Δ, Γ – {#})
(10) (Γ, a2Δa2 → Δ, Γ – {#})
(11) (Σ – {c}, Δ → λ, Δ)
(12) (¢, Δ#Δ → λ, $)

Instructions recognizing Hardest CFL H

� Suppose Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ, Γ = Σ ∪ {d, Δ}.

Instructions for the first phase: Instructions for the second phase:

(1) (¢, Σ → λ, Σ)
(2) (Σ, Σ → λ, d)
(3) (d, Σ → λ, Σ)
(4) (¢, c → Δ, Σ ∪ {Δ})
(5) (Σ ∪ {Δ}, cdc → Δ, Σ ∪ {Δ})

(7) (Γ, a1a1 → λ, Γ – {#})
(8) (Γ, a2a2 → λ, Γ – {#})
(9) (Γ, a1Δa1 → Δ, Γ – {#})
(10) (Γ, a2Δa2 → Δ, Γ – {#})
(11) (Σ – {c}, Δ → λ, Δ)

� In fact, there is no such thing as a first phase or a
second phase. We have only instructions.

� Theorem: H ⊆ L(M), H ⊇ L(M).

(2) (Σ, Σ → λ, d)
(3) (d, Σ → λ, Σ)
(4) (¢, c → Δ, Σ ∪ {Δ})
(5) (Σ ∪ {Δ}, cdc → Δ, Σ ∪ {Δ})
(6) (Σ ∪ {Δ}, cd → Δ, $)

(8) (Γ, a2a2 → λ, Γ – {#})
(9) (Γ, a1Δa1 → Δ, Γ – {#})
(10) (Γ, a2Δa2 → Δ, Γ – {#})
(11) (Σ – {c}, Δ → λ, Δ)
(12) (¢, Δ#Δ → λ, $)

Learning Clearing Restarting Automata

� Let ui ⊢M vi , i = 1,2 …, n be a list of known reductions.

Learning Clearing Restarting Automata

� Let ui ⊢M vi , i = 1,2 …, n be a list of known reductions.

� An algorithm for machine learning the unknown
clearing restarting automaton can be outlined as
follows:

Learning Clearing Restarting Automata

� Let ui ⊢M vi , i = 1,2 …, n be a list of known reductions.

� An algorithm for machine learning the unknown
clearing restarting automaton can be outlined as
follows:

Step 1: k := 1.Step 1: k := 1.

Learning Clearing Restarting Automata

� Let ui ⊢M vi , i = 1,2 …, n be a list of known reductions.

� An algorithm for machine learning the unknown
clearing restarting automaton can be outlined as
follows:

Step 1: k := 1.

u ⊢ v

Step 1: k := 1.

Step 2: For each reduction ui ⊢M vi choose
(nondeterministically) a factorization of ui , such that
ui = xi zi yi and vi = xi yi .

Learning Clearing Restarting Automata

Step 3: Construct a k-cl-RA-automaton M = (Σ, I),
where I = { (Suffk(¢.xi), zi, Prefk(yi.$)) | i = 1, …, n }.

Learning Clearing Restarting Automata

Step 3: Construct a k-cl-RA-automaton M = (Σ, I),
where I = { (Suffk(¢.xi), zi, Prefk(yi.$)) | i = 1, …, n }.

� Prefk(u) (Suffk(u), resp.) denotes the prefix (suffix , resp.) of length
k of the string u in case |u| > k, or the whole u in case |u| ≤ k.

Learning Clearing Restarting Automata

Step 3: Construct a k-cl-RA-automaton M = (Σ, I),
where I = { (Suffk(¢.xi), zi, Prefk(yi.$)) | i = 1, …, n }.

� Prefk(u) (Suffk(u), resp.) denotes the prefix (suffix , resp.) of length
k of the string u in case |u| > k, or the whole u in case |u| ≤ k.

Step 4: Test the automaton M using any available
k u |u| > k u |u| ≤ k

Step 4: Test the automaton M using any available
information e.g. some negative samples of words.

Learning Clearing Restarting Automata

Step 3: Construct a k-cl-RA-automaton M = (Σ, I),
where I = { (Suffk(¢.xi), zi, Prefk(yi.$)) | i = 1, …, n }.

� Prefk(u) (Suffk(u), resp.) denotes the prefix (suffix , resp.) of length
k of the string u in case |u| > k, or the whole u in case |u| ≤ k.

Step 4: Test the automaton M using any available
k u |u| > k u |u| ≤ k

Step 4: Test the automaton M using any available
information e.g. some negative samples of words.

Step 5: If the automaton passed all the tests, return
M. Otherwise try another factorization of the known
reductions and continue by Step 3 or increase k and
continue by Step 2.

Learning Clearing Restarting Automata

� Even if the algorithm is very simple, it can be used to
infer some non-trivial clearing (and after some
generalization also Δ-clearing) restarting automata.

Learning Clearing Restarting Automata

� Even if the algorithm is very simple, it can be used to
infer some non-trivial clearing (and after some
generalization also Δ-clearing) restarting automata.

� Although Δ-clearing restarting automata are stronger
than clearing restarting automata, we will see that

Δ-

Δ-
than clearing restarting automata, we will see that
even clearing restarting automata can recognize
some non-context-free languages.

Learning Clearing Restarting Automata

� Even if the algorithm is very simple, it can be used to
infer some non-trivial clearing (and after some
generalization also Δ-clearing) restarting automata.

� Although Δ-clearing restarting automata are stronger
than clearing restarting automata, we will see that

Δ-

Δ-
than clearing restarting automata, we will see that
even clearing restarting automata can recognize
some non-context-free languages.

� However, it can be shown, that:

� Theorem: ℒ(Δcl-RA) ⊆ CSL, where CSL denotes the
class of context-sensitive languages.

Learning Non-Context-Free Language

� Theorem: There exists a k-cl-RA-automaton M
recognizing a language that is not context-free.

Learning Non-Context-Free Language

� Theorem: There exists a k-cl-RA-automaton M
recognizing a language that is not context-free.
� Idea. We try to create a k-cl-RA-automaton M such that

L(M) ∩ {(ab)n | n>0} = {(ab)2m | m≥0}.

Learning Non-Context-Free Language

� Theorem: There exists a k-cl-RA-automaton M
recognizing a language that is not context-free.
� Idea. We try to create a k-cl-RA-automaton M such that

L(M) ∩ {(ab)n | n>0} = {(ab)2m | m≥0}.

� If L(M) is a CFL then the intersection with a regular language is
CFL CFL

L(M) ∩ {(ab)n | n>0} = {(ab)2m | m≥0}

� If L(M) is a CFL then the intersection with a regular language is
also a CFL. In our case the intersection is not a CFL.

Learning Non-Context-Free Language

� Example:
¢ abababababababab $

Learning Non-Context-Free Language

� Example:
¢ abababababababab $ ⊢M ¢ abababababababb $ ⊢M

¢ abababababbabb $ ⊢M ¢ abababbabbabb $ ⊢M

¢ abbabbabbabb $

Learning Non-Context-Free Language

� Example:
¢ abababababababab $ ⊢M ¢ abababababababb $ ⊢M

¢ abababababbabb $ ⊢M ¢ abababbabbabb $ ⊢M

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $

Learning Non-Context-Free Language

� Example:
¢ abababababababab $ ⊢M ¢ abababababababb $ ⊢M

¢ abababababbabb $ ⊢M ¢ abababbabbabb $ ⊢M

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $

Learning Non-Context-Free Language

� Example:
¢ abababababababab $ ⊢M ¢ abababababababb $ ⊢M

¢ abababababbabb $ ⊢M ¢ abababbabbabb $ ⊢M

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $ ⊢ ¢ abbab $ ⊢

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $ ⊢M ¢ abbab $ ⊢M

¢ abab $

Learning Non-Context-Free Language

� Example:
¢ abababababababab $ ⊢M ¢ abababababababb $ ⊢M

¢ abababababbabb $ ⊢M ¢ abababbabbabb $ ⊢M

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $ ⊢ ¢ abbab $ ⊢

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $ ⊢M ¢ abbab $ ⊢M

¢ abab $ ⊢M ¢ abb $ ⊢M ¢ ab $ ⊢M ¢ λ $ acceptacceptacceptaccept .

Learning Non-Context-Free Language

� Example:
¢ abababababababab $ ⊢M ¢ abababababababb $ ⊢M

¢ abababababbabb $ ⊢M ¢ abababbabbabb $ ⊢M

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $ ⊢ ¢ abbab $ ⊢

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $ ⊢M ¢ abbab $ ⊢M

¢ abab $ ⊢M ¢ abb $ ⊢M ¢ ab $ ⊢M ¢ λ $ acceptacceptacceptaccept .

� From this sample computation we can collect 15
reductions with unambiguous factorizations and use
them as an input to our algorithm.

Learning Non-Context-Free Language

� The only variable we have to choose is k - the length
of the context of the instructions.

Learning Non-Context-Free Language

� The only variable we have to choose is k - the length
of the context of the instructions.

� For k = 1 we get the following set of instructions:
(b, a, b), (a, b, b), (¢, ab, $)

Learning Non-Context-Free Language

� The only variable we have to choose is k - the length
of the context of the instructions.

� For k = 1 we get the following set of instructions:
(b, a, b), (a, b, b), (¢, ab, $)

But then the automaton would accept the word
ababab L

k = 1
(b, a, b), (a, b, b), (¢, ab, $)

But then the automaton would accept the word
ababab which does not belong to L:

ababab ⊢M ababb ⊢M abbb ⊢M abb ⊢M ab ⊢M λ.

Learning Non-Context-Free Language

� For k = 2 we get the following set of instructions:
(ab, a, {b$, ba}), ({¢a, ba}, b, {b$, ba}), (¢, ab, $)

Learning Non-Context-Free Language

� For k = 2 we get the following set of instructions:
(ab, a, {b$, ba}), ({¢a, ba}, b, {b$, ba}), (¢, ab, $)

But then the automaton would accept the word
ababab which does not belong to L:

ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

ababab L
ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

Learning Non-Context-Free Language

� For k = 2 we get the following set of instructions:
(ab, a, {b$, ba}), ({¢a, ba}, b, {b$, ba}), (¢, ab, $)

But then the automaton would accept the word
ababab which does not belong to L:

ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

k = 3

ababab L
ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

� For k = 3 we get the following set of instructions:
({¢ab, bab}, a, {b$, bab}), ({¢a, bba}, b, {b$, bab}), (¢, ab, $)

Learning Non-Context-Free Language

� For k = 2 we get the following set of instructions:
(ab, a, {b$, ba}), ({¢a, ba}, b, {b$, ba}), (¢, ab, $)

But then the automaton would accept the word
ababab which does not belong to L:

ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

k = 3

ababab L
ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

� For k = 3 we get the following set of instructions:
({¢ab, bab}, a, {b$, bab}), ({¢a, bba}, b, {b$, bab}), (¢, ab, $)

And again we get:
ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

Learning Non-Context-Free Language

� Finally, for k = 4 we get the required 4-cl-RA-
automaton M.

¢ab
abab

a
b$

babb
¢a

abba
b

b$
bab$
baba

¢ab
abab

b$
babb

¢a
abba

b$
bab$
baba

¢ ab $

Learning Non-Context-Free Language

� Finally, for k = 4 we get the required 4-cl-RA-
automaton M.

¢ab
abab

a
b$

babb
¢a

abba
b

b$
bab$
baba

� For this 4-cl-RA-automaton M it can be shown, that:
L(M) ∩ {(ab)n | n>0} = {(ab)2m | m≥0}.

¢ab
abab

b$
babb

¢a
abba

b$
bab$
baba

¢ ab $

Conclusion

� We have seen that knowing some sample
computations (or even reductions) of a cl-RA-
automaton (or Δcl-RA-automaton) it is extremely
simple to infer its instructions.

Conclusion

� We have seen that knowing some sample
computations (or even reductions) of a cl-RA-
automaton (or Δcl-RA-automaton) it is extremely
simple to infer its instructions.

� The instructions of a Δcl-RA-automaton are human

Δcl-RA

� The instructions of a Δcl-RA-automaton are human
readable which is an advantage for their possible
applications e.g. in linguistics.

Conclusion

� We have seen that knowing some sample
computations (or even reductions) of a cl-RA-
automaton (or Δcl-RA-automaton) it is extremely
simple to infer its instructions.

� The instructions of a Δcl-RA-automaton are human

Δcl-RA

� The instructions of a Δcl-RA-automaton are human
readable which is an advantage for their possible
applications e.g. in linguistics.

� Unfortunately, we still do not know whether Δcl-RA-
automata can recognize all context-free languages.

Conclusion

� If we generalize Δcl-RA-automata by enabling them
to use any number of auxiliary symbols: Δ1, Δ2, …, Δn

instead of single Δ, we will increase their power up-to
context sensitive languages.

Conclusion

� If we generalize Δcl-RA-automata by enabling them
to use any number of auxiliary symbols: Δ1, Δ2, …, Δn

instead of single Δ, we will increase their power up-to
context sensitive languages.
� Such automata can easily accept all languages generated by

A → a, A → BC, AB → AC

Δ

� Such automata can easily accept all languages generated by
context-sensitive grammars with productions in one-sided
normal form: A → a, A → BC, AB → AC

where A, B, C are nonterminals and a is a terminal.

Conclusion

� If we generalize Δcl-RA-automata by enabling them
to use any number of auxiliary symbols: Δ1, Δ2, …, Δn

instead of single Δ, we will increase their power up-to
context sensitive languages.
� Such automata can easily accept all languages generated by

A → a, A → BC, AB → AC

Δ

� Such automata can easily accept all languages generated by
context-sensitive grammars with productions in one-sided
normal form: A → a, A → BC, AB → AC

where A, B, C are nonterminals and a is a terminal.

� Penttonen showed that for every context-sensitive grammar
there exists an equivalent grammar in one-sided normal form.

Open Problems

� What is the difference between language classes of
ℒ(k-cl-RA) and ℒ(k-Δcl-RA) for different values of k?

Open Problems

� What is the difference between language classes of
ℒ(k-cl-RA) and ℒ(k-Δcl-RA) for different values of k?

� Can Δcl-RA-automata recognize all string languages
defined by ALD’s?

Open Problems

� What is the difference between language classes of
ℒ(k-cl-RA) and ℒ(k-Δcl-RA) for different values of k?

� Can Δcl-RA-automata recognize all string languages
defined by ALD’s?

What is the relation between ℒ(Δcl-RA) and the class

Δcl-RA

� What is the relation between ℒ(Δcl-RA) and the class
of one counter languages, simple context-sensitive
grammars (they have single nonterminal), etc?

References

� ČERNO, P., MRÁZ, F., Clearing restarting automata, tech. report., Department of Computer Science, Charles
University, Prague, 2009.

� CHERUBINI, A., REGHIZZI, S.C., PIETRO, P.S., Associative language descriptions, Theoretical Computer
Science, 270 (2002), 463-491.

� GREIBACH, S. A., The hardest context-free language, SIAM Journal on Computing, 2(4) (1973), 304-310.
� JANČAR, P., MRÁZ, F., PLÁTEK, M., VOGEL, J., Restarting automata, in: H. Reichel (Ed.), FCT'95, LNCS,

Vol. 965, Springer, Berlin, 1995, 283-292.
� JANČAR, P., MRÁZ, F., PLÁTEK, M., VOGEL, J., On restarting automata with rewriting, in: Gh. Paun, A.

Salomaa (Eds.), New Trends in Formal Language Theory (Control, Cooperation and Combinatorics), LNCS,
Vol. 1218, Springer, Berlin, 1997, 119-136.

� JANČAR, P., MRÁZ, F., PLÁTEK, M., VOGEL, J., On monotonic automata with a restart operation, Journal of � JANČAR, P., MRÁZ, F., PLÁTEK, M., VOGEL, J., On monotonic automata with a restart operation, Journal of
Automata, Languages and Combinatorics, 4(4) (1999), 287-311.

� LOPATKOVÁ, M., PLÁTEK, M., KUBOŇ, V., Modeling syntax of free word-order languages: Dependency
analysis by reduction, in: V. Matoušek, P. Mautner, T. Pavelka (Eds.), Text, Speech and Dialogue: 8th
International Conference, TSD 2005, LNCS, Vol. 3658, Springer, Berlin, 2005, 140-147.

� MATEESCU, A., SALOMAA, A., Aspects of classical language theory, in: G. Rozenberg, A. Salomaa (Eds.),
Handbook of Formal Languages, volume 1 - Word, Language, Grammar, chapter 4, Springer, Berlin, 1997, 175-
251.

� MRÁZ, F., OTTO, F., PLÁTEK, M., Learning analysis by reduction from positive data, in: Y. Sakakibara, S.
Kobayashi, K. Sato, T. Nishino, E. Tomita (Eds.), Proceedings ICGI 2006, LNCS, Vol. 4201, Springer, Berlin,
2006, 125-136.

� OTTO, F., Restarting automata and their relation to the chomsky hierarchy. In Z. Ésik, Z. Fülöp (Eds.),
Developments in Language Theory, 7th International Conference, DLT 2003, Szeged, Hungary, LNCS, Vol.
2710, Springer, Berlin, 2003, 55-74.

WEB

http://www.petercerno.wz.cz/ra.html

