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� The new model can be learned very efficiently from 
positive examples and its stronger version enables to 
learn effectively a large class of languages.learn effectively a large class of languages.

� We relate the class of languages recognized by
clearing restarting automata to the Chomsky 
hierarchy.
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� k-clearing restarting automaton (k-cl-RA-automaton
for short) is a couple M = (Σ, I), where:
� Σ is a finite nonempty alphabet, ¢, $ ∉ Σ.

I is a finite set of instructions (x, z, y), x ∊ LCk, y ∊ RCk, z ∊ Σ+,
LC = Σk ∪ ¢.Σ≤k-1

M = (Σ, I)
Σ ¢, $ ∉ Σ

� I is a finite set of instructions (x, z, y), x ∊ LCk, y ∊ RCk, z ∊ Σ+,
� left context LCk = Σk ∪ ¢.Σ≤k-1

� right context RCk = Σk ∪ Σ≤k-1.$

� The special symbols: ¢ and $ are called sentinels.

� The width of the instruction i = (x, z, y) is |i| = |xzy|.
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such that:
� x ⊒ ¢.u (x is a suffix of ¢.u)

� y ⊑ v.$ (y is a prefix of v.$)

w w ⊢*
M λ ⊢*

M

⊢

x ⊒ ¢.u x ¢.u

� y ⊑ v.$ (y is a prefix of v.$)

� A word w is accepted if and only if w ⊢*
M λ where ⊢*

M

is reflexive and transitive closure of ⊢M .

� The k-cl-RA-automaton M recognizes the language 
L(M) = {w ∊ Σ* | M accepts w}.
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k-cl-RA

� Similarly ℒ(cl-RA) denotes the class of all languages
accepted by cl-RA-automata.

� ℒ(cl-RA) = ⋃k≥1ℒ(k-cl-RA).

� Note: For every cl-RA M: λ ⊢*
M λ hence λ ∊ L(M). If 

we say that cl-RA M recognizes a language L, we 
mean that L(M) = L ∪ {λ}.
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cl-RA

� See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html

� The simplicity of cl-RA model implies that the 
investigation of its properties is not so difficult and 
also the learning of languages is easy.

� Another important advantage of this model is that 
the instructions are human readable.
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Example

� Language L = {anbn | n ≥ 0}.

� Can be recognized by the 1-cl-RA M = ({a, b}, I), 
where the instructions I are:
� R1 = (a, ab, b)

R2 = (¢, ab, $)

I
R1 = (a, ab, b)

� R2 = (¢, ab, $)

� For instance:
� aaaabbbb ⊢R1 aaabbb ⊢R1 aabb ⊢R1 ab ⊢R2 λ .

� Now we see that the word aaaabbbb is accepted
because aaaabbbb ⊢*

M λ.
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u ∉ L(M) v ∉ L(M)
v ∊ L(M) ⇒ v ⊢*

M λ ⇒ u ⊢*
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M λ ⇒ u ∊ L(M) ∎

� Observation: For each finite L ⊆ Σ* there exist 1-cl-
RA-automaton M such that L(M) = L ∪ {λ}.
� Proof. Suppose L = {w1, …, wn}.

Consider I = {(¢, w1, $), …, (¢, wn, $)}. ∎
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� Note: The following language: { (ckack)n(ckbck)n | n ≥ 0 }

belongs to ℒ((k+1)-cl-RA) - ℒ(k-cl-RA).

� Theorem: For each regular language L ⊆ Σ* there 
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.

L ⊆ Σ*
exist a k-cl-RA-automaton M : L(M) = L ∪ {λ}.
� Proof. Based on pumping lemma for regular languages.

� For each z ∊ Σ*, |z|=n there exist u, v, w such that |v|≥1 and 
δ(q0, uv) = δ(q0, u); the word v can be crossed out.

� We add corresponding instruction iz = (¢.u, v, w).

� For each accepted z ∊ Σ<n - {λ} we add instruction iz = (¢, z, $).
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� Theorem: The language L1 = {ancbn | n ≥ 0} ∪ {λ} is 
not recognized by any cl-RA-automaton.
� Note: L1 can be recognized by a simple RRWW-automaton. 

Moreover L1 is a context-free language, thus we get the 
following corollary:

L1

following corollary:

� Corollary: 
� ℒ(cl-RA) ⊂ ℒ(RRWW).

� CFL - ℒ(cl-RA) ≠ ∅.
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� Let L2 = {anbn | n≥0} and L3 = {anb2n | n≥0} be two 
sample languages. Apparently both L2 and L3 are 
recognized by 1-cl-RA-automata.

� Theorem: Languages L2 ∪ L3 and L2 . L3 are not 
recognized by any cl-RA-automaton.

ℒ(cl-RA)

1-cl-RA

L2 ∪ L3 L2 . L3

recognized by any cl-RA-automaton.

� Corollary: ℒ(cl-RA) is not closed under union, 
concatenation, and homomorphism.
� For homomorphism use {anbn | n≥0} ∪ {cnd2n | n≥0} and 

homomorphism defined as: a ↦ a, b ↦ b, c ↦ a, d ↦ b. ∎
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Some Theorems

� It is easy to see that each of the following languages:
� L4 = {ancbn | n ≥ 0} ∪ {ambm | m ≥ 0}

� L5 = {ancbm | n, m ≥ 0} ∪ {λ}

� L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.

ℒ(cl-RA)

L6 = {ambm | m ≥ 0}

can be recognized by a 1-cl-RA-automaton.

� Corollary: ℒ(cl-RA) is not closed under:
� intersection: L1 = L4 ∩ L5 .

� intersection with regular language: L5 is regular.

� set difference: L1 = (L4 - L6) ∪ {λ} .
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Parentheses

� The following instruction of 1-cl-RA M is enough for 
recognizing the language of correct parentheses:

� (λ, ( ), λ)
� Note: This instruction represents a set of instructions:

({¢}∪Σ, ( ), Σ∪{$}), where Σ = {(, )} and

(A, w, B) = {(a, w, b) | a∊A, b∊B}

(λ, ( ), λ)

� ({¢}∪Σ, ( ), Σ∪{$}), where Σ = {(, )} and

� (A, w, B) = {(a, w, b) | a∊A, b∊B}.

� Note: We use the following notation for the (A, w, B):

A w B
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� Suppose that we want to check correctness of arithmetic 
expressions over the alphabet Σ = {α, +, *, (, )}.

� For example α+(α*α+α) is correct, α*+α is not.

� The priority of the operations is considered.

� The following 1-cl-RA-automaton is sufficient:� The following 1-cl-RA-automaton is sufficient:
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Arithmetic Expressions - Example

Expression Instruction

α*α + ((α + α) + (α + α*α))*α (¢, α*, α)

α + ((α + α) + (α + α*α))*α (α, +α, ) )

α + ((α) + (α + α*α))*α ( ), *α, $)

α + ((α) + (α + α*α)) (+, α*, α)

α + ((α) + (α + α)) ( (, α+, α)α + ((α) + (α + α)) ( (, α+, α)

α + ((α) + (α)) ( (, α, ) )

α + (( ) + (α)) ( (, ( )+, ( )

α + ((α)) ( (, α, ) )

α + (( )) ( (, ( ), ) )

α + ( ) (¢, α+, ( )

( ) (¢, ( ), $)

λ accept
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Nondeterminism

� Assume the following instructions:
� R1 = (bb, a, bbbb)

� R2 = (bb, bb, $)

� R3 = (¢, cbb, $)

and the word: cbbabbbb. Then:
cbbabbbb ⊢R1 cbbbbbb ⊢R2 cbbbb ⊢R2 cbb ⊢R3 λ

R3 = (¢, cbb, $)

and the word: cbbabbbb. Then:
� cbbabbbb ⊢R1 cbbbbbb ⊢R2 cbbbb ⊢R2 cbb ⊢R3 λ.

� But if we have started with R2:
� cbbabbbb ⊢R2 cbbabb

then it would not be possible to continue.

� ⇒ The order of used instructions is important!
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� As we have seen not all context-free languages are 
recognized by a cl-RA-automaton.

� We still can characterize CFL using clearing 
restarting automata, inverse homomorphism and 
Greibach’s hardest context-free language.Greibach’s hardest context-free language.
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� Greibach constructed a context-free language H, such 
that:
� Any context-free language can be parsed in whatever time or 
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� Any context-free language L can be obtained from H by an 
inverse homomorphism. That is, for each context-free 
language L, there exists a homomorphism φ: L = φ-1(H).
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� Let D2 be Semi-Dyck language on {a1, a2, a1, a2}
generated by the grammar: S → λ | SS | a1Sa1 | a2Sa2 .

� Then H = {λ} ∪ {∏i=1..nxicyiczid | n ≥ 1, y1y2…yn ∊ #D2, 
xi, zi ∊ Σ*}, 
� y1 ∊ # . {a1, a2, a1, a2}* ,

� yi ∊ {a1, a2, a1, a2}* for all i > 1.
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� So we will slightly extend the definition of cl-RA-
automata in order to be able to recognize more 
languages including H.
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M = (Σ, I)
Σ ¢, $, Δ ∉ Σ , Γ = Σ ∪ {Δ}

� I is a finite set of instructions of the following forms:
� (1) (x, z → λ, y)

� (2) (x, z → Δ, y)

� where x ∊ LCk, y ∊ RCk, z ∊ Γ+.
� left context LCk = Γk ∪ ¢. Γ≤k-1

� right context RCk = Γk ∪ Γ≤k-1.$
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� A word w = uzv can be rewritten to usv (uzv ⊢M usv) 
if and only if there exist an instruction i = (x, z → s, y) 
∊ I such that:
� x ⊒ ¢.u (x is a suffix of ¢.u)

� y ⊑ v.$ (y is a prefix of v.$)

w w ⊢*
M λ ⊢*

M

⊢

∊ I 
x ⊒ ¢.u x ¢.u

� y ⊑ v.$ (y is a prefix of v.$)

� A word w is accepted if and only if w ⊢*
M λ where ⊢*

M

is reflexive and transitive closure of ⊢M .

� The k-Δcl-RA-automaton M recognizes the language 
L(M) = {w ∊ Σ* | M accepts w}.
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� By Δcl-RA we will denote the class of all Δ- clearing 
restarting automata.

� ℒ(k-Δcl-RA) denotes the class of all languages
accepted by k-Δcl-RA-automata.

Similarly ℒ(Δcl-RA) denotes the class of all languages
Δcl-RA

ℒ(k-Δcl-RA)
k-Δcl-RA

� Similarly ℒ(Δcl-RA) denotes the class of all languages
accepted by Δcl-RA-automata.

� ℒ(Δcl-RA) = ⋃k≥1ℒ(k-Δcl-RA).

� Note: For every Δcl-RA M: λ ⊢*
M λ hence λ ∊ L(M). If 

we say that Δcl-RA M recognizes a language L, we 
mean that L(M) = L ∪ {λ}.
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� Language L = {ancbn | n ≥ 0}.

� Can be recognized by the 1-Δcl-RA M = ({a, b, c}, I), 
where the instructions I are:
� Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

I
Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)

� RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

� For instance:
� aaacbbb ⊢Rc1 aaΔbb ⊢RΔ1 aΔb ⊢RΔ2 λ .

� Now we see that the word aaacbbb is accepted
because aaacbbb ⊢*

M λ.
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� In the first phase we start with deleting letters ( from the 
alphabet Σ = {a1, a2, a1, a2, #, c} ) from the right side of ¢ and 
from the left and right sides of the letters d.

� As soon as we think that we have the following word:

¢ cy1cd  cy2cd… cyncd $ , we introduce the Δ symbols:

¢ Δy1Δy2Δ… ΔynΔ $

� In the second phase we check if y1y2…yn ∊ #D2 .
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� Let ui ⊢M vi , i = 1,2 …, n be a list of known reductions.

� An algorithm for machine learning the unknown 
clearing restarting automaton can be outlined as 
follows:

Step 1: k := 1.

u ⊢ v

Step 1: k := 1.

Step 2: For each reduction ui ⊢M vi choose 
(nondeterministically) a factorization of ui , such that 
ui = xi zi yi and vi = xi yi .
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Step 3: Construct a k-cl-RA-automaton M = (Σ, I), 
where I = { ( Suffk(¢.xi), zi, Prefk(yi.$) ) | i = 1, …, n }.

� Prefk(u) (Suffk(u), resp.) denotes the prefix (suffix , resp.) of length 
k of the string u in case |u| > k, or the whole u in case |u| ≤ k.

Step 4: Test the automaton M using any available 
k u |u| > k u |u| ≤ k

Step 4: Test the automaton M using any available 
information e.g. some negative samples of words.

Step 5: If the automaton passed all the tests, return
M. Otherwise try another factorization of the known 
reductions and continue by Step 3 or increase k and 
continue by Step 2.
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� Even if the algorithm is very simple, it can be used to 
infer some non-trivial clearing (and after some 
generalization also Δ-clearing) restarting automata.

� Although Δ-clearing restarting automata are stronger 
than clearing restarting automata, we will see that 

Δ-

Δ-
than clearing restarting automata, we will see that 
even clearing restarting automata can recognize 
some non-context-free languages.

� However, it can be shown, that:

� Theorem: ℒ(Δcl-RA) ⊆ CSL, where CSL denotes the 
class of context-sensitive languages.
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� Theorem: There exists a k-cl-RA-automaton M
recognizing a language that is not context-free.
� Idea. We try to create a k-cl-RA-automaton M such that

L(M) ∩ {(ab)n | n>0} = {(ab)2m | m≥0}.

� If L(M) is a CFL then the intersection with a regular language is 
CFL CFL

L(M) ∩ {(ab)n | n>0} = {(ab)2m | m≥0}

� If L(M) is a CFL then the intersection with a regular language is 
also a CFL. In our case the intersection is not a CFL.
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� Example:
¢ abababababababab $ ⊢M ¢ abababababababb $ ⊢M

¢ abababababbabb $ ⊢M ¢ abababbabbabb $ ⊢M

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M
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¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $ ⊢M ¢ abbab $ ⊢M

¢ abab $ ⊢M ¢ abb $ ⊢M ¢ ab $ ⊢M ¢ λ $ acceptacceptacceptaccept .

� From this sample computation we can collect 15 
reductions with unambiguous factorizations and use 
them as an input to our algorithm.
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� For k = 2 we get the following set of instructions:
(ab, a, {b$, ba}), ({¢a, ba}, b, {b$, ba}), (¢, ab, $)

But then the automaton would accept the word 
ababab which does not belong to L:

ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

k = 3

ababab L
ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

� For k = 3 we get the following set of instructions:
({¢ab, bab}, a, {b$, bab}), ({¢a, bba}, b, {b$, bab}), (¢, ab, $)

And again we get:
ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.
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� Finally, for k = 4 we get the required 4-cl-RA-
automaton M.
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� For this 4-cl-RA-automaton M it can be shown, that: 
L(M) ∩ {(ab)n | n>0} = {(ab)2m | m≥0}.
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simple to infer its instructions. 

� The instructions of a Δcl-RA-automaton are human 

Δcl-RA

� The instructions of a Δcl-RA-automaton are human 
readable which is an advantage for their possible 
applications e.g. in linguistics.

� Unfortunately, we still do not know whether Δcl-RA-
automata can recognize all context-free languages.
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Conclusion

� If we generalize Δcl-RA-automata by enabling them 
to use any number of auxiliary symbols: Δ1, Δ2, …, Δn

instead of single Δ, we will increase their power up-to 
context sensitive languages.
� Such automata can easily accept all languages generated by 

A → a, A → BC, AB → AC

Δ

� Such automata can easily accept all languages generated by 
context-sensitive grammars with productions in one-sided 
normal form: A → a, A → BC, AB → AC

where A, B, C are nonterminals and a is a terminal.

� Penttonen showed that for every context-sensitive grammar
there exists an equivalent grammar in one-sided normal form.
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Open Problems

� What is the difference between language classes of 
ℒ(k-cl-RA) and ℒ(k-Δcl-RA) for different values of k?

� Can Δcl-RA-automata recognize all string languages 
defined by ALD’s?

What is the relation between ℒ(Δcl-RA) and the class 

Δcl-RA

� What is the relation between ℒ(Δcl-RA) and the class 
of one counter languages, simple context-sensitive 
grammars (they have single nonterminal), etc?
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