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Motivation

I We study one- and multidimensional permutive cellular
automata as dynamical systems

I Permutive cellular automata are very chaotic. . .

I . . . and their commutators are sometimes very regular

I [Moore & Boykett 97]: Affine bipermutive CA can only
commute with other affine CA

I We generalize this to n dimensions (was left open)
using completely different methods

I We also obtain interesting results on orbits of subshifts
under permutive CA
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Cellular Automata

Definition

A cellular automaton is a function f from SZd
to itself

defined by a local rule F : SN → S by

f (x)~n = F (xN+~n),

where N ⊂ Zd is a finite neighborhood of f

Example

The two-dimensional three-neighbor XOR automaton
f : {0, 1}Z2 → {0, 1}Z2

, defined by

f (x)~n = x~n + x~n+~e1
+ x~n+~e2

mod 2,

has neighborhood {~0,~e1,~e2}.
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Permutivity

Definition

A cellular automaton f on SZd
is permutive on a coordinate

~v ∈ Zd if permuting x~v always permutes f (x)~0. It is totally
extremally permutive (TEP) if it is permutive in every vertex
of the convex hull of its neighborhood. One-dimensional
TEP automata are bipermutive.
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Introduction

Motivation

Definitions

Results

Commutator Lemma

1D Topological
Randomization

Multidimensional
Topological
Randomization

Results for
Commutators

Linearity and Affinity

Definition

Let G be a finite abelian group. A cellular automaton f on
GZd

is linear if f (x + y) = f (x) + f (y), and affine if

f (x) = g(x) + c for some linear CA g and c ∈ GZd
.

Note that c is necessarily unary.

Example

The three-neighbor two-dimensional XOR automaton is
linear. It is also TEP. The XOR automaton composed with a
bit flip is affine and TEP.
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Main Lemma

Lemma (Commutator Lemma)

Let f , g and h be cellular automata on SZd
such that g and

h commute with f . Let X ⊂ SZd
be a subshift such that⋃

n∈N f n(X ) = SZd
. If g |X = h|X , then g = h.

Proof.

Let y ∈ SZd
, and let ε > 0. Then there exist n ∈ N and

x ∈ X such that

g(y)
ε
≈ g(f n(x)) = f n(g(x)) = f n(h(x)) = h(f n(x))

ε
≈ h(y),

proving the claim.
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Main Lemma

I If
⋃

n∈N f n(X ) = SZd
holds, we say f topologically

randomizes X .

I Related to asymptotic randomization of measures (see
[Pivato 2012]).

I It turns out that TEP automata topologically randomize
many subshifts.
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Repetition of Patterns

In a bipermutive CA, every word surrounded by a spatially
and temporally periodic pattern will repeat:

v u u u · · ·

v

T
im

e
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Randomization of SFTs

Proposition

Let X ⊂ SZ be a mixing SFT, let x ∈ S−N be such that xs
occurs in X for all s ∈ S, and let f be a bipermutive CA on
SZ. Then f topologically randomizes X .

We can assume that x = ∞w for some w ∈ S+.

In the above, a transivite point also exists in X :

Theorem

If a bipermutive CA f topologically randomizes a mixing
SFT X , then {f n(x) | n ∈ N} = SZ for some x ∈ X .
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Introduction

Motivation

Definitions

Results

Commutator Lemma

1D Topological
Randomization

Multidimensional
Topological
Randomization

Results for
Commutators

Randomization of SFTs

Proposition

Let X ⊂ SZ be a mixing SFT, let x ∈ S−N be such that xs
occurs in X for all s ∈ S, and let f be a bipermutive CA on
SZ. Then f topologically randomizes X .

We can assume that x = ∞w for some w ∈ S+.
In the above, a transivite point also exists in X :

Theorem

If a bipermutive CA f topologically randomizes a mixing
SFT X , then {f n(x) | n ∈ N} = SZ for some x ∈ X .



Commutators of
Bipermutive and

Affine Cellular
Automata

Ville Salo,
Ilkka Törmä
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Proof of Proposition

By induction: every v ∈ S∗ occurs in f n(X ) for arbitrarily
large n.

v

z w w w
x ∈ X

T
im

e

v occurs in nth image of x ∈ X

v

v repeats by periodicity
and permutivity

B

A

permuting A also
permutes B,
length of z can
be chosen suitably
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Linear Case and Sparse Shifts

With a similar proof:

Proposition

Every bipermutive linear CA on Zp, where p is prime,
topologically randomizes every nontrivial mixing SFT.

Corollary

Every bipermutive (bipermutive and linear on Zp) CA
topologically randomizes the one-dimensional k-sparse shift
on S (binary k-sparse shift on Zp).
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Multidimensional Sparse Shifts

Proposition

Every TEP automaton topologically randomizes the
d-dimensional k-sparse shift on S (where every kd -block
may contain at most one nonzero symbol).

Proof sketch:

Change neighborhood by
applying shear transfor-
mation to whole space

On points with vertical
period p, we basically
have a bipermutive 1D
CA

p

We now take a verti-
cally periodic point in
which a desired pattern
(repeatedly) appears
later. . .

. . . permute one symbol
as in the 1D case. . .

. . . add an even larger
vertical period and con-
tinue with the induction

p′
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Multidimensional Sparse Shifts

Similarly:

Proposition

Every linear TEP automaton on ZZd

p , where p is prime,
topologically randomizes the d-dimensional binary k-sparse
shift.
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Size of Commutator

Theorem

Let f be a TEP automaton on SZd
. The number of CA with

given neighborhood of size m that commute with f is at
most |S |1+m(|S |−1). If S = Zp for a prime p and f is linear,
it is at most |S |1+m.

Note that there are |S ||S |m CA with given neighborhood of
size m.

Proof.

Every m-neighbor CA g commuting with f is defined by its
restriction to any k-sparse shift X . For large enough k , the
local rule of g |X is defined by 1 + m(|S | − 1) patterns. The
linear case is similar, but uses binary k-sparse shifts.
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Commutator of Affine TEP CA

Theorem

Let f be an affine TEP automaton on GZd
, where G is an

abelian group, and let g commute with f . Then g is also
affine.

I The 1D case is essentially proved in
[Moore & Boykett 97] using algebraic methods.

I We also have a new proof, similar to the randomization
of mixing SFTs.

I The multidimensional case is reduced to the
one-dimensional case as in the case of randomization.
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Our Proof of the 1D Case

v 0 w
x

g
g(v) g(w)

g(x)

f n

g(v) + g(w) + C

f n(g(x))

f n

v + w + D
f n(x)

g

g(v + w + D)

g(f n(x))
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Introduction

Motivation

Definitions

Results

Commutator Lemma

1D Topological
Randomization

Multidimensional
Topological
Randomization

Results for
Commutators

Our Proof of the 1D Case

v 0 w
x

g
g(v) g(w)

g(x)

f n

g(v) + g(w) + C

f n(g(x))

f n

v + w + D
f n(x)

g

g(v + w + D)

g(f n(x))



Commutators of
Bipermutive and

Affine Cellular
Automata

Ville Salo,
Ilkka Törmä
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Future Goals

I Show topological randomization for other subshifts and
cellular automata

I Study relation to asymptotic randomization of measures

I Generalize final theorem to other algebraic structures
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