Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo Ilkka Törmä

TUCS – Turku Centre for Computer Science University of Turku, Finland

Automata 2013

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

Introduction Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

・ロト・日本・日本・日本・日本・日本

Motivation

- We study one- and multidimensional *permutive* cellular automata as dynamical systems
- Permutive cellular automata are very chaotic...
- ... and their commutators are sometimes very regular

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Motivation

- We study one- and multidimensional *permutive* cellular automata as dynamical systems
- Permutive cellular automata are very chaotic...
- ... and their commutators are sometimes very regular
- [Moore & Boykett 97]: Affine bipermutive CA can only commute with other affine CA
- We generalize this to n dimensions (was left open) using completely different methods
- We also obtain interesting results on orbits of subshifts under permutive CA

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

Outline

Introduction Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introductior

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

・ロト・日本・山田・ 山田・ 山田・

Cellular Automata

Definition

A *cellular automaton* is a function f from $S^{\mathbb{Z}^d}$ to itself defined by a *local rule* $F : S^N \to S$ by

$$f(x)_{\vec{n}}=F(x_{N+\vec{n}}),$$

where $N \subset \mathbb{Z}^d$ is a finite *neighborhood* of f

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction Motivation

Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Cellular Automata

Definition

A *cellular automaton* is a function f from $S^{\mathbb{Z}^d}$ to itself defined by a *local rule* $F : S^N \to S$ by

$$f(x)_{\vec{n}}=F(x_{N+\vec{n}}),$$

where $N \subset \mathbb{Z}^d$ is a finite *neighborhood* of *f*

Example

The two-dimensional three-neighbor XOR automaton $f: \{0,1\}^{\mathbb{Z}^2} \to \{0,1\}^{\mathbb{Z}^2}$, defined by

$$f(x)_{\vec{n}} = x_{\vec{n}} + x_{\vec{n}+\vec{e}_1} + x_{\vec{n}+\vec{e}_2} \mod 2,$$

has neighborhood $\{\vec{0}, \vec{e}_1, \vec{e}_2\}$.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

ntroduction

Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Permutivity

Definition

A cellular automaton f on $S^{\mathbb{Z}^d}$ is *permutive* on a coordinate $\vec{v} \in \mathbb{Z}^d$ if permuting $x_{\vec{v}}$ always permutes $f(x)_{\vec{0}}$. It is *totally extremally permutive* (TEP) if it is permutive in every vertex of the convex hull of its neighborhood. One-dimensional TEP automata are *bipermutive*.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

ntroduction Motivation

Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

Linearity and Affinity

Definition

Let G be a finite abelian group. A cellular automaton f on $G^{\mathbb{Z}^d}$ is *linear* if f(x + y) = f(x) + f(y), and affine if f(x) = g(x) + c for some linear CA g and $c \in G^{\mathbb{Z}^d}$.

Note that c is necessarily unary.

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

ntroduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Linearity and Affinity

Definition

Let G be a finite abelian group. A cellular automaton f on $G^{\mathbb{Z}^d}$ is *linear* if f(x+y) = f(x) + f(y), and *affine* if f(x) = g(x) + c for some linear CA g and $c \in G^{\mathbb{Z}^d}$.

Note that c is necessarily unary.

Example

The three-neighbor two-dimensional XOR automaton is linear. It is also TEP. The XOR automaton composed with a bit flip is affine and TEP.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

ntroduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

Outline

Introduction Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization Multidimensional Topological Randomization Results for Commutators Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Lemma (Commutator Lemma)

Let f, g and h be cellular automata on $S^{\mathbb{Z}^d}$ such that g and h commute with f. Let $X \subset S^{\mathbb{Z}^d}$ be a subshift such that $\overline{\bigcup_{n \in \mathbb{N}} f^n(X)} = S^{\mathbb{Z}^d}$. If $g|_X = h|_X$, then g = h.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Lemma (Commutator Lemma)

Let f, g and h be cellular automata on $S^{\mathbb{Z}^d}$ such that g and h commute with f. Let $X \subset S^{\mathbb{Z}^d}$ be a subshift such that $\overline{\bigcup_{n \in \mathbb{N}} f^n(X)} = S^{\mathbb{Z}^d}$. If $g|_X = h|_X$, then g = h.

Proof.

Let $y \in S^{\mathbb{Z}^d}$, and let $\epsilon > 0$. Then there exist $n \in \mathbb{N}$ and $x \in X$ such that

$$g(y) \stackrel{\epsilon}{\approx} g(f^n(x)) = f^n(g(x)) = f^n(h(x)) = h(f^n(x)) \stackrel{\epsilon}{\approx} h(y),$$

proving the claim.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization Multidimensional Topological Randomization Results for Commutators

・ロト ・ 日本・ 小田・ ・ 田・ うらぐ

• If
$$\overline{\bigcup_{n\in\mathbb{N}} f^n(X)} = S^{\mathbb{Z}^d}$$
 holds, we say f topologically randomizes X .

 Related to asymptotic randomization of measures (see [Pivato 2012]). Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Results for Commutators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- If $\overline{\bigcup_{n \in \mathbb{N}} f^n(X)} = S^{\mathbb{Z}^d}$ holds, we say f topologically randomizes X.
- Related to asymptotic randomization of measures (see [Pivato 2012]).
- It turns out that TEP automata topologically randomize many subshifts.

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological

Multidimensional Topological Randomization Results for Commutators

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Outline

Introduction Motivation Definitions

Results

1D Topological Randomization

Multidimensional Topological Randomization Results for Commutators Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization

Multidimensional Topological Randomization Results for Commutators

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Repetition of Patterns

In a bipermutive CA, every word surrounded by a spatially and temporally periodic pattern will repeat:

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemm

1D Topological Randomization

Randomization of SFTs

Proposition

Let $X \subset S^{\mathbb{Z}}$ be a mixing SFT, let $x \in S^{-\mathbb{N}}$ be such that xs occurs in X for all $s \in S$, and let f be a bipermutive CA on $S^{\mathbb{Z}}$. Then f topologically randomizes X.

We can assume that $x = {}^{\infty}w$ for some $w \in S^+$.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Commutator Lemma

1D Topological Randomization

Randomization of SFTs

Proposition

Let $X \subset S^{\mathbb{Z}}$ be a mixing SFT, let $x \in S^{-\mathbb{N}}$ be such that xs occurs in X for all $s \in S$, and let f be a bipermutive CA on $S^{\mathbb{Z}}$. Then f topologically randomizes X.

We can assume that $x = {}^{\infty}w$ for some $w \in S^+$. In the above, a transivite point also exists in X:

Theorem

If a bipermutive CA f topologically randomizes a mixing SFT X, then $\overline{\{f^n(x) \mid n \in \mathbb{N}\}} = S^{\mathbb{Z}}$ for some $x \in X$.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization

Multidimensional Topological Randomization Results for Commutators

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

By induction: every $v \in S^*$ occurs in $f^n(X)$ for arbitrarily large n.

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization

Multidimensional Topological Randomization Results for Commutators

うせん 同一 ふぼう ふぼう ふむ

By induction: every $v \in S^*$ occurs in $f^n(X)$ for arbitrarily large n.

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization

By induction: every $v \in S^*$ occurs in $f^n(X)$ for arbitrarily large n.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization

By induction: every $v \in S^*$ occurs in $f^n(X)$ for arbitrarily large n.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma

1D Topological Randomization

Linear Case and Sparse Shifts

With a similar proof:

Proposition

Every bipermutive linear CA on \mathbb{Z}_p , where p is prime, topologically randomizes every nontrivial mixing SFT.

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Result

Commutator Lemma

1D Topological Randomization

Multidimensional Topological Randomization Results for Commutators

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Linear Case and Sparse Shifts

With a similar proof:

Proposition

Every bipermutive linear CA on \mathbb{Z}_p , where p is prime, topologically randomizes every nontrivial mixing SFT.

Corollary

Every bipermutive (bipermutive and linear on \mathbb{Z}_p) CA topologically randomizes the one-dimensional k-sparse shift on S (binary k-sparse shift on \mathbb{Z}_p). Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Result

Commutator Lemma

1D Topological Randomization

Outline

Introduction Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Result

Commutator Lemma 1D Topological Randomization

Multidimensional Topological Randomization

Results for Commutators

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Proposition

Every TEP automaton topologically randomizes the d-dimensional k-sparse shift on S (where every k^d -block may contain at most one nonzero symbol).

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization

Multidimensional Topological Randomization

Results for Commutators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition

Every TEP automaton topologically randomizes the d-dimensional k-sparse shift on S (where every k^d -block may contain at most one nonzero symbol).

Proof sketch:

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Result

Commutator Lemma 1D Topological Randomization

Multidimensional Topological Randomization

Results for Commutators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition

Every TEP automaton topologically randomizes the d-dimensional k-sparse shift on S (where every k^d -block may contain at most one nonzero symbol).

Proof sketch:

Change neighborhood by applying shear transformation to whole space Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization

Multidimensional Topological Randomization

Proposition

Every TEP automaton topologically randomizes the d-dimensional k-sparse shift on S (where every k^d -block may contain at most one nonzero symbol).

Proof sketch:

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization

Multidimensional Topological Randomization

Proposition

Every TEP automaton topologically randomizes the d-dimensional k-sparse shift on S (where every k^d -block may contain at most one nonzero symbol).

Proof sketch:

We now take a vertically periodic point in which a desired pattern (repeatedly) appears later... Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization

Multidimensional Topological Randomization

Proposition

Every TEP automaton topologically randomizes the d-dimensional k-sparse shift on S (where every k^d -block may contain at most one nonzero symbol).

Proof sketch:

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization

Multidimensional Topological Randomization

Results for Commutators

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Every TEP automaton topologically randomizes the d-dimensional k-sparse shift on S (where every k^d -block may contain at most one nonzero symbol).

Proof sketch:

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Result

Commutator Lemma 1D Topological Randomization

Multidimensional Topological Randomization

Results for Commutators

・ロト・日本・日本・ 日本・ シック・

Similarly:

Proposition

Every linear TEP automaton on $\mathbb{Z}_p^{\mathbb{Z}^d}$, where p is prime, topologically randomizes the d-dimensional binary k-sparse shift.

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Result

Commutator Lemma 1D Topological Randomization

Multidimensional Topological Randomization

Results for Commutator

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Outline

Introduction Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for Commutators Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for

Results for Commutators

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Size of Commutator

Theorem

Let f be a TEP automaton on $S^{\mathbb{Z}^d}$. The number of CA with given neighborhood of size m that commute with f is at most $|S|^{1+m(|S|-1)}$. If $S = \mathbb{Z}_p$ for a prime p and f is linear, it is at most $|S|^{1+m}$.

Note that there are $|S|^{|S|^m}$ CA with given neighborhood of size m.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introductior

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Results for Commutators

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Size of Commutator

Theorem

Let f be a TEP automaton on $S^{\mathbb{Z}^d}$. The number of CA with given neighborhood of size m that commute with f is at most $|S|^{1+m(|S|-1)}$. If $S = \mathbb{Z}_p$ for a prime p and f is linear, it is at most $|S|^{1+m}$.

Note that there are $|S|^{|S|^m}$ CA with given neighborhood of size m.

Proof.

Every *m*-neighbor CA *g* commuting with *f* is defined by its restriction to any *k*-sparse shift *X*. For large enough *k*, the local rule of $g|_X$ is defined by 1 + m(|S| - 1) patterns. The linear case is similar, but uses binary *k*-sparse shifts.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Commutator of Affine TEP CA

Theorem

Let f be an affine TEP automaton on $G^{\mathbb{Z}^d}$, where G is an abelian group, and let g commute with f. Then g is also affine.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Results for Commutators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Commutator of Affine TEP CA

Theorem

Let f be an affine TEP automaton on $G^{\mathbb{Z}^d}$, where G is an abelian group, and let g commute with f. Then g is also affine.

- The 1D case is essentially proved in [Moore & Boykett 97] using algebraic methods.
- We also have a new proof, similar to the randomization of mixing SFTs.
- The multidimensional case is reduced to the one-dimensional case as in the case of randomization.

Commutators of Bipermutive and Affine Cellular Automata

Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Results for Commutators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Results for Commutators

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 ● ���

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Results for Commutators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Results for Commutators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization

Results for Commutators

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Show topological randomization for other subshifts and cellular automata
- Study relation to asymptotic randomization of measures
- Generalize final theorem to other algebraic structures

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for

Results for Commutators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Show topological randomization for other subshifts and cellular automata
- Study relation to asymptotic randomization of measures
- Generalize final theorem to other algebraic structures

Thank you!

Commutators of Bipermutive and Affine Cellular Automata

> Ville Salo, Ilkka Törmä

Introduction

Motivation Definitions

Results

Commutator Lemma 1D Topological Randomization Multidimensional Topological Randomization Results for

Commutators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ