

Cellular Automata with Memory

Ramón Alonso-Sanz ramon.alonso@upm.es

REFERENCES

<u>Conventional</u> CA are Markovian (ahistoric, memoryless¹): The next state of a cell depends solely on its current neighborhood (\mathcal{N}) configuration.

$$\sigma_i^{(T+1)} = \phi(\{\sigma_{j\in\mathcal{N}_i}^{(T)}\}) \quad \forall i$$

CA with embedded memory

$$\begin{split} \mathbf{s}_{i}^{(T)} &= \mathbf{s}\left(\sigma_{i}^{(1)}, \dots, \sigma_{i}^{(T-1)}, \sigma_{i}^{(T)}\right) \quad \rightarrow \quad \sigma_{i}^{(T+1)} = \phi\left(\left\{\mathbf{s}_{j\in\mathcal{N}_{i}}^{(T)}\right\}\right) \quad \forall i \\ f_{i}^{(T)} &= \phi\left(\left\{\sigma_{j\in\mathcal{N}_{i}}^{(T)}\right\}\right) \quad \rightarrow \quad \sigma_{i}^{(T+1)} = \mathbf{s}\left(f_{i}^{(1)}, \dots, f_{i}^{(T-1)}, f_{i}^{(T)}\right) \quad \forall i \\ \mathbf{CA with \ delay \ memory} \end{split}$$

Extension to the standard framework where:

The mapping ϕ remains unaltered, every cell retains historic memory of its past states by means of the trait state s. So to say, cells canalize memory to the map.

¹
$$\sigma_i^{(T)} = \phi(\{\sigma_{j\in\mathcal{N}_i}^{(T-1)}\})$$
 Chain like (indirect) effect of the past \equiv memory-one

Example

 ϕ : cell alive if any cell in its neighborhood is alive (speed of light).

s: Majority (most frequent, mode) memory. Last state in case of a tie. Embedded: $s_i^{(T)} = mode(\sigma_i^{(1)}, \dots, \sigma_i^{(T)}) \rightarrow \sigma_i^{(T+1)} = \phi(\{s_{i \in \mathcal{N}_i}^{(T)}\})$ $\forall i$ σ ssssss σ ϕ Ф **Delay:** $f_i^{(T)} = \phi(\{\sigma_{i \in \mathcal{N}_i}^{(T)}\}) \rightarrow \sigma_i^{(T+1)} = mode(f_i^{(1)} \dots, f_i^{(T)})$ $\forall i$

MAJORITY memory \Rightarrow **INERTIAL** effect

<u>LIMITED TRAILILING</u> memory of the last $\underline{\tau}$ states:

Example: $\tau = 3$ -Majority memory: $\mathbf{s}_{i}^{(T)} = mode \left(\sigma_{i}^{(T-2)}, \sigma_{i}^{(T-1)}, \sigma_{i}^{(T)}\right) \qquad \sigma_{i}^{(T+1)} = mode \left(f_{i}^{(T-2)}, f_{i}^{(T-1)}, f_{i}^{(T)}\right) \qquad T > 2$ Speed of light with $\tau = 3$ -Majority Embedded memory $\boldsymbol{\sigma}$

1D Parity rule ϕ : cell alive iff odd number of alive cells in its neighborhood

Elementary Legal Rules with Majority Memory

Weighted memory (unlimited trailing embedded memory)

$$m_i^{(T)}(\sigma_i^{(1)}, \dots, \sigma_i^{(T)}) = \frac{\sigma_i^{(T)} + \sum_{t=1}^{T-1} \alpha^{T-t} \sigma_i^{(t)}}{\prod_{t=1}^{T-1} \alpha^{T-t}} \equiv \frac{\omega_i^{(T)}}{\Omega(T)} = \frac{\sigma_i^{(T)} + \alpha \omega_i^{(T-1)}}{1 + \alpha \Omega(T-1)} *$$

$$\begin{bmatrix}
 \sigma_i^{(T-2)} \\
 \sigma_i^{(T-1)} \\
 \sigma_i^{(T)} \\
 \times \alpha
 \end{bmatrix}
 \times \alpha$$

 $\nabla \alpha T - 1$

(1)

The choice of the **memory factor** $0 \le \alpha \le 1$ fits the memory effect: the limit case $\alpha = 1$ is equivalent to unlimited trailing *majority* memory, whereas $\alpha << 1$ intensifies the contribution of the most recent states (short-range memory). The choice $\alpha = 0$ leads to the ahistoric model.

If $\sigma \in \{0, 1\}$, trait state s by rounding the weighted mean m:

$$s_i^{(T)} = \begin{cases} 1 & if \quad m_i^{(T)} > 0.5 \\ \sigma_i^{(T)} & if \quad m_i^{(T)} = 0.5 \\ 0 & if \quad m_i^{(T)} < 0.5 \end{cases} \qquad s_i^{(1)} = \sigma_i^{(1)} \ , \ s_i^{(2)} = \sigma_i^{(2)}$$

Implementation

k = 2: α -MEMORY EFFECTIVE if $\alpha > 0.5$ *{ $\sigma_i^{(t)}, t = 1, 2, ..., T$ } NO NEEDED

Drawback: $\alpha \rightarrow$ real numbers

Weighted memory (unlimited trailing delay memory)

$$m_i^{(T)}(f_i^{(1)}, \dots, f_i^{(T)}) = \frac{f_i^{(T)} + \sum_{t=1}^{T-1} \alpha^{T-t} f_i^{(t)}}{1 + \sum_{t=1}^{T-1} \alpha^{T-t}} \equiv \frac{\omega_i^{(T)}}{\Omega(T)} = \frac{f_i^{(T)} + \alpha \omega_i^{(T-1)}}{1 + \alpha \Omega(T-1)} *$$

$$\begin{array}{c} f_i^{(1)} & \times \alpha^{T-1} \\ & \ddots & \ddots \\ \hline f_i^{(T-2)} & \times \alpha^2 \\ \hline f_i^{(T-1)} & \times \alpha \\ \hline f_i^{(T)} & \times 1 \end{array}$$

The choice of the **memory factor** $0 \le \alpha \le 1$ fits the memory effect: the limit case $\alpha = 1$ is equivalent to unlimited trailing *majority* memory, whereas $\alpha << 1$ intensifies the contribution of the most recent states (short-range memory). The choice $\alpha = 0$ leads to the ahistoric model.

If $\sigma \in \{0, 1\}$, trait state s by rounding the weighted mean m:

$$s_i^{(T)} = \begin{cases} 1 & if \quad m_i^{(T)} > 0.5 \quad \equiv 2\omega_i^{(T)} > \Omega(T) \\ f_i^{(T)} & if \quad m_i^{(T)} = 0.5 \quad \equiv 2\omega_i^{(T)} = \Omega(T) \\ 0 & if \quad m_i^{(T)} < 0.5 \quad \equiv 2\omega_i^{(T)} < \Omega(T) \end{cases}$$

Implementation

k = 2: α -MEMORY EFFECTIVE if $\alpha > 0.5$ *{ $f_i^{(t)}, t = 1, 2, ..., T$ } NO NEEDED

Drawback: $\alpha \rightarrow$ real numbers

function cam T=8;SR=254;alpha=1.0;N=2*T+1; [srb]=binarynumber(SR);left=[N 1:N-1];right=[2:N 1]; for memo=1:2 [SIGMA,OMEGA,omega]=init(T,N,alpha); switch memo case 1 % Embedded for t=1:T SIGMAH(t,:)=SIGMA;S=SIGMA; omega=(alpha*omega)+SIGMA;OMEGAX=OMEGA(t); for i=1:N if(2*omega(i)>OMEGAX)S(i)=1;end; % memory if(2*omega(i)<OMEGAX)S(i)=0;end</pre> end [SIGMA]=RULE(S,N,srb,left,right); % rule HS(t,:)=S;end case 2 % Delay [SIGMA,OMEGA,omega]=init(T,N,alpha);S=SIGMA; for t=1:T SIGMAH(t,:)=SIGMA; [S] =RULE(SIGMA,N,srb,left,right); % rule SIGMA=S;HS(t,:)=S; omega=(alpha*omega)+SIGMA;OMEGAX=OMEGA(t); for i=1:N if(2*omega(i)>OMEGAX)SIGMA(i)=1;end % memory if(2*omega(i)<OMEGAX)SIGMA(i)=0;end endend end subplot(3,2,2*(memo-1)+1);image(33*SIGMAH]);axis image;axis('off'): if(memo==1)title('sigma embedded');else;title('sigma delay');end subplot(3,2,2*(memo-1)+2);imagesc(33*HS,[0,44]);axis image;axis('off'); if(memo==1)title('s');else;title('f');end end print camembedelay.eps -depsc function [SIGMA,OMEGA,omega]=init(T,N,alpha); SIGMA(1:N)=0; SIGMA((N+1)/2:(N+1)/2)=1; OMEGA(1)=1.0;omega(1:N)=0; for t=2:T;OMEGA(t)=1+alpha*OMEGA(t-1);end function [SIGMA]=RULE(S,N,srb,left,right); for i=1:N SIGMA(i)=srb(8-(4*S(left(i))+2*S(i)+S(right(i)))); end function [BN] =binarynumber(rule); BN(1:8)=0; irtx=rule; for ix=1:8 rest=mod(irtx,2);ratio=(irtx-rest)/2;BN(8-ix+1)=rest;irtx=ratio;

end

sigma delay

Elementary Legal Rules with α -Memory

	α	Embedo	led			lpha Delay
Ahistoric	0.6	0.7	0.8	0.9	1.0	Ahistoric 0.6 0.7 0.8 0.9
Rules 18,90,14	46,218 🔅	~	^	^	^	Rules 18,90,146,218
Rule 22		Å	8		•	Rule 22
Rules 50,122,1						Rules 50,122,178,250
Rule 54	A	Å	Å	\$\$\$	-	Rule 54
Rule 94	᠕	᠕	᠕	⋒	A	
Rule 120		A		â		
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	*	*				
Dulas 202 274						Deles 200 254
Rules 222,254						

Elementary legal rules with <u>low</u> α -delay memory

Elementary, Legal Rules with α -delay Memory

black = Damage spreading

Alonso-Sanz, R. (2013). Elementary cellular automata with memory of delay type. LNCS, 8155, 67-83.

ECA with α -delay Memory

black = Damage spreading

<u>1D r=2</u> CA : neighborhood nearest and next-nearest neighbors

$$\sigma_i^{(T+1)} = \phi \big(\sigma_{i-2}^{(T)}, \sigma_{i-1}^{(T)}, \sigma_i^{(T)}, \sigma_{i+1}^{(T)}, \sigma_{i+2}^{(T)} \big)$$

In <u>totalistic</u> r = 2 rules:

$$\sigma_i^{(T+1)} = \phi \left(\sigma_{i-2}^{(T)} + \sigma_{i-1}^{(T)} + \sigma_i^{(T)} + \sigma_{i+1}^{(T)} + \sigma_{i+2}^{(T)} \right)$$

With memory:

$$\begin{split} \sigma_i^{(T+1)} &= \phi \big(s_{i-2}^{(T)} + s_{i-1}^{(T)} + s_i^{(T)} + s_{i+1}^{(T)} + s_{i+2}^{(T)} \big) \\ f_i^{(T)} &= \phi \big(\sigma_{i-2}^{(T)} + \sigma_{i-1}^{(T)} + \sigma_i^{(T)} + \sigma_{i+1}^{(T)} + \sigma_{i+2}^{(T)} \big) \end{split}$$

Totalistic k=r=2 rules are characterized by a sequence of binary values (β_s) associated with each of the six possible values of the sum (s) of the neighbors:

$$(\beta_5\beta_4\beta_3\beta_2\beta_1\beta_0)_{binary} \equiv \sum_{s=0}^{5} \beta_s 2^s = R \in [0, 63]$$

totalistic r=2 rules = $VR_2^6 = 2^6 = 64$

1D r=2 CA with α -Embedded Memory

1D r=2 CA with Majority Embedded Memory

1D r=2 CA with Majority Delay Memory

The 2D PARITY rule with Memory. Moore N.

			\mathbf{Rule}	e 682(10	10101010	D) EME	BEDDED				Rule 682(1010101010) DELAY											
NO MEMORY					:: : :: :: : ::				· · · ·	· · · · · ·	NO MEMO	RY		· · · ·	=		:: : :: :: : ::				· · · ·	
		•	ш		:::				· · · · · · · · ·					· · · · ·	/ 500 / 600 / 200	\\$/ ### /\$\	**** ****	0 10-0 10-0	9998 9006 8668			
α=0.503 ■ ⅲ ⅲ		+ H + 2 8 2 + H +	۲						i					. .		ж	[]] []]		: 	2.4.2 代 共 争 2.422	1,9,7 3605 4,84	沒 共 決 第一章 第一章
α=0.505 				+ H + • I = I + H +	۲		Ŵ				α=0.505 ■ ::: ::: ::: ::: :::		ii i	· 3 IN	i nîm i nîm		۲.					()
	Ø		1011 1011 1011			inde Fæd Frans	<i>武</i>				α= 0.51 •■ ::: ::: ::: :::	:::				426 (486): 426	285 00-00 982	礅	瀻		4114 2009 2019	
	:::		8 8	逬	Æ		+## ### +##			lute Dægg Rafe	α= 0.53 ■ ::: :::: ::: :::::::::::::::::::::::	([]	ŧ į	¢ »				5000 5000 8000		43865 11 - 11 42865		
$\alpha = 0.54$			88	邂	æ					NAXA: Norma Naxa:	$\alpha = 0.54$ $\blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ $\alpha = 0.60$	(C)		i d	f 💥							
$\alpha = 0.70$:::	·∎ ::: ::: α =0.70	•	•	- 11						<u>);;</u>		邇
α= 0.80			•	•							$\alpha = 0.80$			• •	•							
$\alpha = 0.90$:::		:::		:::		:::	•	$\alpha = 0.90$				•	•	•	•	•	•	•	•
α=1.00		•		•							$\alpha = 1.00$										•	·
								-		-	• = = = = = = =											

Alonso-Sanz, R., Martin, M. (2002). Cellular Automata with Memory: patterns starting with a single site seed. IJMPC, 13, 1.

The 2D PARITY rule with low memory: $\alpha = 0.501$

										E.	MB.	EDI	JED										
• • •		::::					 • :::		:::					•		6 M I 6 III I 0 W I) 淡白 第1 2 第1 2 第1	≝ % ₩ ₩ ₩ ₩	¥9 武治	产和 生物	2005 2005 2006	Ø	
								な観心					2000年 2000 2005 2005										The second state of the second second
		L'AND AND A				Constant of		ALGO							altransfere.						A CONTRACTOR		
	$\alpha - 0$	n 50 [.]	1				B	ule	682	(101)	010	1010	л) т	DEI	AY								
	·∎∷				: ::			• •		, D , D 	\8 (0) (0) (1) (1) (2)	60 :	, 			1941) 9313 2541				2(+) +:::) :::::::::::::::::::::::::::::			
				thurse at															()); 96 66()				
							a a a a a a a a a a a a a a a a a a a																
in Tai	Y.S	14.) 30. j				/-13 1-16	5 ()-4 5 ()-4	5.4						Ť.							interio Salaria Vistanti	-1919 Maria - Anglia Maria - Anglia Maria - Anglia Maria - Anglia	F

Ramon Alonso-Sanz

[]"

$Memory: Chaos (III) \rightarrow Complex (IV)$

- Martinez,G.J.,Adamatzky,A.,Alonso-Sanz,R.(2013). Designing complex dynamics in cellular automata with memory. *IJBC*, (in press)
- Martinez,G.J.,Adamatzky,A.,Alonso-Sanz,R.(2012). Complex dynamics of elementary cellular automata emerging from chaotic rules. *IJBC*,22,2.
- Martinez, G.J., Adamatzky, A., Chen, F, Chua, L. (2012). On Soliton Collisions between Localizations in Complex Elementary Cellular Automata: Rules 54 and 110 and Beyond. *Complex Systems*, 21(2), 117-142.
- Martinez,G.J.,Adamatzky,A.,Alonso-Sanz,R.,Seck-Touh-Mora,J.C.(2009). Complex dynamics emerging in Rule 30 with majority memory. *Complex Systems*, 18, 3.
- Martinez, G.J., Adamatzky, A., Seck-Touh-Mora, J.C., Alonso-Sanz, R. (2010). How to make dull cellular automata complex by adding memory: Rule 126 case study. *Complexity*, 15, 6.
- Alonso-Sanz, R., Martin, M. (2005). One-dimensional cellular automata with memory in cells of the most recent value. CS, 15, 3.

Elementary Rules (ψ) as Memory ($\tau = 3$):

Embedded memory

$$\begin{split} \mathbf{s}_{i}^{(T)} &= \psi\left(\sigma_{i}^{(T-2)}, \sigma_{i}^{(T)}, \sigma_{i}^{(T-1)}\right) \rightarrow \sigma_{i}^{(T+1)} = \phi\left(\left\{\mathbf{s}_{j\in\mathcal{N}_{i}}^{(T)}\right\}\right) \quad \forall i \\ f_{i}^{(T)} &= \phi\left(\left\{\sigma_{j\in\mathcal{N}_{i}}^{(T)}\right\}\right) \rightarrow \sigma_{i}^{(T+1)} = \psi\left(f_{i}^{(T-2)}, f_{i}^{(T)}, f_{i}^{(T-1)}\right) \quad \forall i \\ \mathbf{Delay memory} \end{split}$$

Example:
$$\psi$$
= Majority \equiv ECA232
 $s_i^{(T)} = mode\left(\sigma_i^{(T-2)}, \sigma_i^{(T)}, \sigma_i^{(T-1)}\right) \qquad \sigma_i^{(T+1)} = mode\left(f_i^{(T-2)}, f_i^{(T)}, f_i^{(T-1)}\right)$

Alonso-Sanz, R., Bull, L. (2009). Elementary cellular automata with elementary memory rules in cells: The case of linear rules. JCA, 1, 1. Alonso-Sanz, R. (2013). Elementary cellular automata with memory of delay type. JCA (in press).

The rule $\phi = 150$ with delay ECA memories

+ 0	+ 1	+ 2	+ 3	+ 4	+ 5	+ 6	+ 7	+128	+129	+130	+131	+132	+133	+134	+135
	ΜŶΝ.	^	ZÂ.	\wedge	E.Û.	I AR	A	^	ZÂN.	^	ZÂ.	$^{\sim}$	Â.	æ.	Â
+ 8	+ 9	+10	+11	+12	+13	+14	+15	+136	+137	+138	+139	+140	+141	+142	+143
~	Â.	ÅÅ.		$^{\wedge}$	Â	<i>∕</i> &∖		~	Â.			$^{\wedge}$		ж ер.	A
+16	+17	+18	+19	+20	+21	+22	+23	+144	+145	+146	+147	+148	+149	+150	+151
<u>.</u>	NÊ	<u>.</u>	<u>z</u> °>	$/ \gtrsim$	СŴ.	120	.8	<u>,</u>		$\frac{\Omega}{ZZ}$	<u>i kon</u>	$/ \gtrsim$		/	
+24	+25	+26	+27	+28	+29	+30	+31	+152	+153	+154	+155	+156	+157	+158	+159
<u>.</u>	ê.	<u></u>	<u>ana</u>	$/ \gtrsim$	<u>M</u>	⊿&	.8.	<u>, A</u>	AAAA	<u>A</u>	<u> ana</u>	$/ \gtrsim$		AR.	- 22
+32	+33	+34	+35	+36	+37	+38	+39	+160	+161	+162	+163	+164	+165	+166	+167
~	A			$^{\wedge}$	Â	122		~	ZÛ.	ÂÀ	16 0.	$^{\wedge}$	dia.	a da	A
+40	+41	+42	+43	+44	+45	+46	+47	+168	+169	+170	+171	+172	+173	+174	+175
	<u>.</u>	λ	1836.	$^{\wedge}$	A.	/ / ///	A	0	. 6 Ca.	Ľλ	<i>1</i> 0%.	$^{\wedge}$		A A	Â
+48	+49	+50	+51	+52	+53	+54	+55	+176	+177	+178	+179	+180	+181	+182	+183
	100 A					14 8	**			Μ.				æà.	
+56	+57	+58	+59	+60	+61	+62	+63	+184	+185	+186	+187	+188	+189	+190	+191
	A.B.	<u>Ś</u> ż			47	<i>&</i> €&.			<u></u>	ፈአ				Δà.	.43
+64	+65	+66	+67	+68	+69	+70	+71	+192	+193	+194	+195	+196	+197	+198	+199
κ».		r1		A A	A9.	ፈሔ		~~		44		\mathbb{A}^{2}		A.	
+72	+73	+74	+75	+76		+78	+79	+200	+201	+202	+203	+204	+205	+206	+207
«».								~~		27		A ² A		_{ፈን} ሥ	
+80		+02	<u>+83</u>	+84	+00	+80	+87	+208	+209	+210	+211	+212	+213	+214	+215
						<u></u>		833 1 216				<u>/</u> ???		. A B.	1002
+00	+89	+90		A	+93	+94	+90	$\dot{\Lambda}$	+217	+210	+219	+220 		+222	+225
		작품		A3	1 101		102	81% 1.224	<u> 1925</u>				1 220		1.0.21
-90 	\$	+90	9 9			+102	+103	$\Lambda^{\pm 224}$	<u>+225</u>	+220		+220 		+230	+201
104		106			100		1.111	1.222		<u>// 1</u>				A A	1.220
104 11	+105	+100		-108 	+109	+110	+111	$\dot{\mathbf{\Omega}}$	+235	+204	+235	+230	+201	+230	+239
5.5		<i>3</i> 70.				128			100	ХЪ				M	
-11 ∠ Ω	+113	+114	+110			+110	+119	+240	+241	+242	+243	+ ²⁴⁴	+240	+40	+247
				A A	1125		127						1 259	*	1.255
	+121	+122	+123	<u>+124</u>	+120	+120	+127	+ 4 40	+49	+ ⊿50	+201	+ <u>404</u>	+203	+ ∡04	+200
8 <u>8</u>	A	AA -		A.M.				<u></u>	10885	A 11	\mathbb{Z}	<u> </u>		A	

The rule 90 with embedded ECA memories

The rule 90 with embedded ECA memories

The rule 90 with embedded ECA memories

<u>REVERSIBLE</u> CA (Fredkin): $\sigma_i^{(T+1)} = \phi(\{\sigma_{i \in \mathcal{N}_i}^{(T)}\}) \ominus \sigma_i^{(T-1)}$ **EMBEDDED MEMORY:** $\sigma_i^{(T+1)} = \phi(\{s_{i \in \mathcal{N}_i}^{(T)}\}) \ominus \sigma_i^{(T-1)}$ **DELAY MEMORY:** $\sigma_i^{(T+1)} = s(f_i^{(1)}, \dots, f_i^{(T)}) \ominus \sigma_i^{(T-1)}$ $\sigma_i^{(T-1)} = \phi(\{\sigma_{i \in \mathcal{N}_i}^{(T)}\}) \ominus \sigma_i^{(T+1)}$ **Reversion:** $\sigma_i^{(T-1)} = \phi\left(\left\{\boldsymbol{s}_{i\in\mathcal{N}_i}^{(T)}\right\}\right) \ominus \sigma_i^{(T+1)} \qquad \sigma_i^{(T-1)} = \boldsymbol{s}\left(f_i^{(1)}, \dots, f_i^{(T)}\right) \ominus \sigma_i^{(T+1)}$ $\omega_i^{(T-1)} = (\omega_i^{(T)} - f_i^{(T)}) / \alpha$ $\omega_{i}^{(T-1)} = (\omega_{i}^{(T)} - \sigma_{i}^{(T)})/\alpha$

Rule 682(1010101010)

NO MEMORY	(1867) (1867) (1867) (1867) (1867) (1867) (1867) (1867) (1867) (1867)		**** ***** ****		''''''''''''''''''''''''''''''''''''''	後半 (本) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		· · · · · · · · · · · · · · · · · · ·	
α=0.501 EMB	EDDED			4, 1, 1, 6 3, - , - 2 9, 1, 1, 9	X 5 X 10 · 10 X 5 X	71277 19 = 12 20 20 20		油印度 使感到 算迹和	
$\alpha = 0.501$ DELA	AY	`₩₩₩ ₩₽₽₩ ₩₽₽₩	*060* -000- •000-	0, ;; ,0 11 · · 11 0 ^ = `0	<u>Nie</u> 215	₩,	()		

collidoscope.com/modernca/reversablerules.html sjsu.rudyrucker.com/

Alonso-Sanz, R. (2003). Reversible Cellular Automata with Memory: patterns starting with a single site seed. Physica D, 175, 1/2. Alvarez, G. et al. (2005). A secret scheme to share color images. Computer Physics Comm., 173,1/2.

$$0 \stackrel{\oplus}{\ominus} 0=0 1 \stackrel{\oplus}{\ominus} 0=0 1 \stackrel{\oplus}{\ominus} 1=0 0 \stackrel{\oplus}{\ominus} 1=1$$

Reversible Parity Rule $({\sigma^{(0)}} = {\sigma^{(1)}})$

	Rule 682(1010101010) EMBEDDED												Rule 682(10101010) DELAY												
NO MEM ■#[:] []	10RY				* * * **** ****			58 A A5 500 a 110 500 a 110	油紙 紙 油紙 準:::::::::: :::::::::::::::::::::::::			5 ★::::::::::::::::::::::::::::::::::::	NO ME •*[]]	MORY				* * * **** ****			50 0 00 c() c ()c c() c ()c	油山 (田) (田) 洋 : :::::::::::: 油 : ::::::::::::::::::			·····································
α=0.501 ■₩[:] []]	0,00 %*** 0:3 40 * 000 40 **						11.5 X 11. 11. X 2 X					n n fe Feilen Feilen	α=0.501 ¤₩[:][]	000 400 0:5 40 000 40)436) 1938) 7990)	2000 -2000 -2000	©, ≑,0 ⊪ · 4 0 * 0	31€ 215	214 214	**** -*** ****		())会会() (中))) ())(中)()	
α =0.503 □₩[:][:][:]	0,00 %*** 0::0 40.0 0:0 40.0		1406) 0880 1974	010 Hiin 010		Ø						3711-18 (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本)	α=0.503 □₩[:][;]	000 XX 0:0 40 0:0 40 0:0 40					5,5,0 83 2'8'5	፝፞፞፝፝፞፞፞፞ቚዾ ፼፞፼ ዸቘዄ		1564631 ¥=¥ 4294934		n Heit Heit	
α =0.505 ■₩[:][]]	0,0,0 %*** 0::0 40.0 000 ,999			Santa E = a Cauta)间中间 (中间) (四中则)		8	α=0.505 □₩[]][]	0,00 %# 0,00 %# 0,00 %#	ŧ III	ikadi Gene 1979:		1000 1000 1000 1000 1000 1000 1000	2648. 1849)						
α=0.510 ■₩[:] []]		邇	3 33	懣	0-0 0-0	28	虃						α =0.510 □ ≭ [:][]		. 494 . 406 . 406	ii ;	y : x - ≣ - λ : X					342 543	۲	2 # 1 #1 > # 2	8
α= 0.530 ■ ≭ [:] [']		æ	88)	5 0 3 603 203		œ			₩2# 12:22				α =0.530 ■₩[:]	米 援	: 33	۲		澎	968 RA		4×4 ×0× **		畿)	1
α=0.540 □ж[:][:]		æ)	5.03 690 293								600) 800-33 1209	α =0.540 ■₩[:][]	₩ #3	: :::	O	হায় হায়	癳	ама Хих амь	33		in the second			ॖॖॖॖॵख़ऄॖ ॾख़ऀख़ ऄॖॖॖॎक़ऻॖॖऄ
α= 0.600 ■₩[:] :::	* *	:::			8	505 505	68	B	濑	512 215	ено 2002 Сно		α=0.600 ·■₩[:][]	测计	: 🔛	**	æ	t t	ج	(c0.c) 1000 1000			×	246742 19 88 20 1912-19	25-25 2005 22-53
$\alpha = 0.700$ •• * * *	∷ ¥	33	83		ала Кор Түк	14.5 17.5 77.5	Ø);;;;;; ;;;;;;;		5.5.7 1100111 120011	$\alpha = 0.700$ $\pi = 0.800$	96 X	×	::	[8]	æ	8	#:# 4:#	*		302		史》明 2 漢之 本 3 在
·•**	:: ·			(e)	ж	Ж	<u>(0)</u>	(e)	:::	:::	585 602 674	.	·= # · ::				(e)	(e)			(e)	(e)	:::	:::	(e)
$\alpha = 0.900$ $\alpha = 1.000$:: •	=		(e)	۰	D		9	B	:::			$\alpha = 0.900$ $\alpha = 1.000$				(6)	(e)			2				10
•■₩₩				36			(6)	96)	D			(#)									•				

	Rey	versi Embeda	\mathbf{ble}	leg	gal	ECA wit	h α -1	mem Delav	ory	7	
Ahistoric	0.6	0.7	0.8	0.9	1.0	Ahistoric	0.6	0.7	0.8	0.9	1.0
Rule 18	ó))(()(()))))	Ĵ	ŧ	Î	Rule 18	*	****	****	*	***
Rule 22		Â	Å	Î	Â	Rule 22	\$	₫ÛÛÛÛ		4III0III	
Rule 54	tin te	Â	Ĵ	Î	Î	Rule 50	43808	Î		H	^
Rule 00		& 8888 888	\$8888	38885	\$888 8	Rule 54			Â	Ŵ	
Rule 90					鲁	Rule 90	1	\$ \$	* *	♣ ♣	* *
Rule 94	Â		Â	Â		Rule 94				1	49993
Rule 122						Rule 122			*	∦ #	*
	â					Rule 126					

```
function cam
SR=254;T=8;N=2*T+1;nat=6;plus=3;
alfa(1)=0.5;alfa(2)=0.6;alfa(3)=0.7;alfa(4)=0.8;alfa(5)=0.9;alfa(6)=1.0;
[srb]=binarynumber(SR);left=[N 1:N-1];right=[2:N 1];
for memo=1:2
for nal=1:nat; alpha=alfa(nal);
    [SIGMA,OMEGA,omega]=init(T,N,alpha);XX=SIGMA;
   switch memo
    case 1 % Embedded
    for t=1:T
      SIGMAH(t,:)=SIGMA;X_1=XX;XX=SIGMA;if(t==T)XSIGMA=SIGMA;end
      S=SIGMA; omega=(alpha*omega)+SIGMA; OMEGAX=OMEGA(t);
      for i=1:N
        if(2*omega(i)>OMEGAX)S(i)=1;end; % memory
        if(2*omega(i) < OMEGAX)S(i)=0;end
      end
      [SIGMA]=RULE(S,N,srb,left,right); % rule
      SIGMA=mod(SIGMA+X_1,2);
     end
     subplot(5+nat*plus,nat+plus,(nat+plus)*(memo-1)+nal);image(33*SIGMAH);axis('off');axis im
                          <sup>x</sup> reversion
     XX=SIGMA;SIGMA=XSIGMA;
     for t=1:T
      X_ 1=XX;SIGMAH(t,:)=SIGMA; XX=SIGMA;
      if(t > 1)
        S=SIGMA;OMEGAX=OMEGA(T-t+1);
        if(alpha>0);omega=(omega-X_1)/alpha;
        for i=1:N
                                         % back-memory
         if(2*omega(i)>DMEGAX)S(i)=1;end
         if(2*omega(i)<OMEGAX)S(i)=0;end
        end
      end
      end
      [SIGMA]=RULE(S,N,srb,left,right); % rule
      SIGMA=mod(SIGMA-X_1,2);
     subplot(5+nat*plus, nat+plus, (nat+plus)*(memo)+nal); image(33*SIGMAH); axis('off'); axis imag
     case 2 % delay
      [SIGMA,OMEGA,omega]=init(T,N,alpha);S=SIGMA;XX=SIGMA;
       for t=1:T
      SIGMAH(t,:)=SIGMA;X_1=XX;XX=SIGMAif(t==T)XSIGMA=SIGMA;end
      [S]=RULE(SIGMA,N,srb,left,right); % rule
      SIGMA=S;HS(t,:)=S;
      omega=(alpha*omega)+SIGMA;OMEGAX=OMEGA(t);
      for i=1:N
        if(2*omega(i)>OMEGAX)SIGMA(i)=1;end % memory
        if(2*omega(i) < OMEGAX)SIGMA(i)=0;end
      end
      SIGMA=mod(SIGMA+X 1.2);
     end
     subplot(5+nat*plus,nat+plus,(nat+plus)*(memo+2)+nal);image(33*SIGMAH);axis('off');axis image;
                          x reversion
     XX=SIGMA;SIGMA=XSIGMA;
     for t=1:T
      X_ 1=XX;SIGMAH(t,:)=SIGMA;XX=SIGMA;
      [S]=RULE(SIGMA,N,srb,left,right); % rule
      SIGMA=S;
      if(alpha>0)
        OMEGAX=OMEGA(T-t+1);
        for i=1:N
        if(2*omega(i)>OMEGAX)SIGMA(i)=1;end % back-memory
        if(2*omega(i)<OMEGAX)SIGMA(i)=0;end
         end
        omega=(omega-S)/alpha;
        end
      SIGMA=mod(SIGMA-X_1,2);
      end
     end
     subplot(5+nat*plus,nat+plus,(nat+plus)*(memo+2)+nal);image(33*SIGMAH);axis('off');ennis image;
end
end
print carevmemory.eps -depsc
function [SIGMA]=RULE(S,N,srb,left,right);
      for i=1:N
       SIGMA(i)=srb(8-(4*S(left(i))+2*S(i)+S(right(i))));
      end
function [SIGMA,OMEGA,omega]=init(T,N,alpha);
        SIGMA(1:N)=0; SIGMA((N+1)/2:(N+1)/2)=1;
        OMEGA(1)=1.0; omega(1:N)=0;
        for t=2:T;OMEGA(t)=1+alpha*OMEGA(t-1);end
function [BN] =binarynumber(rule);
        BN(1:8)=0; irtx=rule;
        for ix=1:8
        rest=mod(irtx,2);ratio=(irtx-rest)/2;BN(8-ix+1)=rest;irtx=ratio;
end
```

σ embedded s

Reversible legal ECA with low α -memory α Delay

	$\operatorname{Re}_{\alpha}$	versi Embedd	$\mathbf{ble}_{\mathbf{ed}}$	leg	gal	ECA wit	$h \alpha - 1$	mem Delav	ory	7	
Ahistoric	0.6	0.7	0.8	0.9	1.0	Ahistoric	<u>0.6</u>	0.7	0.8	0.9	1.0
Rule 146		Â	Â	Î		Rule 146	<u>المجامعة</u>		Î	Î	ŝ
Rule 150				8 00	8 20 20	Rule 150			Å	Å	, Ņ
Rule 178	4 8888 88	Â		ÂCCC	() 00000	Rule 178		~# 88888 88		HERE KKY	
Rule 102		& 8888 8888	\$8888	38888	\$888 8	Rule 182		Â.	Â	Ŵ	
	Å		4 00000	\$ 00000		Rule 218					
		Â	Å	*	*	Rule 222			â		
Rule 250	8		\$	ô	*	Rule 250			â	*	
Rule 254	â			â	â	Rule 254					

1D r=2 CA

Rule III block CA with $\tau = 3$ majority memory, starting at random.

Two-dimensional block cellular automata

The HPP block CA rule with delay memory and the Density Classification Task

Percentage of correctly classified densities and average time up to convergence. 2D lattices of size $n \times n$. 10⁵ binomially generated ICs.

	$\tau = 3$	$\tau = 4$	$\tau = 5$	$\tau = 6$	$\tau = 7$	$\alpha = 0.55$	$\alpha = 0.60$	$\alpha = 0.65$	$\alpha = 0.70$	$\alpha = 0.75$
n=22 n=21	88.732 42 82.762 87	92.840 41 87.331 87	$\begin{array}{ccc} 87.467 & 51 \\ 81.892 & 105 \end{array}$	89.804 46 84.152 100	$\begin{array}{rrrr} 86.715 & 61 \\ 81.472 & 127 \end{array}$	92.988 43 88.601 99	94.212 40 86.771 92	$\begin{array}{rrrr} 92.109 & 39 \\ 85.951 & 95 \end{array}$	$\begin{array}{rrrr} 90.786 & 43 \\ 84.892 & 97 \end{array}$	90.552 48 84.512 114
n=32 n=31	$\begin{array}{ccc} 87.297 & 65 \\ 81.782 & 136 \end{array}$	$\begin{array}{rrrr} 91.362 & 62 \\ 84.712 & 136 \end{array}$	85.853 78 80.682 164	87.840 73 82.972 157	84.417 93 80.272 195	$\begin{array}{rrrr} 92.378 & 59 \\ 85.770 & 149 \end{array}$	92.159 61 84.588 141	$\begin{array}{rrr} 90.319 & 61 \\ 84.357 & 150 \end{array}$	88.752 68 83.241 152	88.331 77 82.815 182
n=42 n=41	86.101 88 80.272 186	89.818 85 83.552 186	84.426 105 79.432 220	86.449 100 82.082 213	83.665 126 78.472 248	91.442 80 83.792 200	$\begin{array}{rrr} 90.610 & 85 \\ 83.392 & 191 \end{array}$	88.836 86 83.202 206	86.916 96 82.402 208	86.813 107 81.682 244

Alonso-Sanz, R. (2013). Cellular automaton with memory and the density classification task. J. of Cellular Automata (in press)

The Rule III block CA rule with delay memory and the DCT

Evolution of density with low delay memory. Fifty simulations.

Percentage of correctly classified densities and average time up to convergence in n-size registers. 10^5 binomially generated ICs.

Alonso-Sanz, R. (2013). Cellular automaton with memory and the density classification task. J. of Cellular Automata (in press)

SALVADOR DALI

The Persistence of Memory

Disintegration of the Persistence of Memory