Computational complexity of majority automata under different updating schemes

Pedro Montealegre ¹ Eric Goles²

¹Laboratoire d'Informatique Fondamentale d'Orlans Université d'Orléans, Orléans, France

²Facultad de Ciencias y Tecnología Universidad Adolfo Ibáñez, Santiago, Chile

September 19, 2013

Automata network

An Automata Network is a triple $\mathcal{A} = (G, Q, f_i : i \in V)$, where

- G = (V, E) is a simple undirected graph and $V = \{1, \ldots, n\}$.
- ▶ Q the set of states (Q = {0,1})
- ▶ $f_i : \{0,1\}^n \to \{0,1\}$ is the transition function associated to the vertex *i*.

We say that vertices in state 1 are *active* while vertices in state 0 are *passive*.

An updating scheme (US) of the automaton A is a function

$$\phi: V \to \{1 \dots |V|\}$$

st. if *u* and *v* are vertices and $\phi(u) < \phi(v)$ then the state of *u* is updated before *v*, and if $\phi(u) = \phi(v)$ then nodes *u* and *v* are update at the same time.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 めんぐ

Synchronous: $\phi = 1$.

(All vertices are updated at the same time.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Synchronous: $\phi = 1$.

(All vertices are updated at the same time.)

Sequential: φ = σ, where σ is a permutation of V. (One vertex at a time)

Synchronous: $\phi = 1$.

(All vertices are updated at the same time.)

- Sequential: φ = σ, where σ is a permutation of V.
 (One vertex at a time)
- Block sequential:

$$V = \bigcup_{i=1}^{k} V_i, \qquad \bigcap_{i=1}^{k} V_i = \emptyset, \qquad \phi|_{V_i} = i$$

The vertex set is partitioned into several subsets, st. into the same set every vertex is updated at the same time, and different subsets are updated sequentially in some order.

Trajectory of a configuration

Let $x \in \{0,1\}^n$ be a configuration of an automaton. The trajectory $T^{\phi}(x)$ of x with the updating scheme ϕ is the set

$$T^{\phi}(x) = \{x(t) : t \ge 0\}$$

where x(0) = x and x(t+1) is obtained from x(t) after every vertex is updated according to ϕ .

There are at most 2^n different configurations (finite graph), then the trajectory of any configuration eventually enters to a limit cycle for any US. (Steady state)

There are at most 2^n different configurations (finite graph), then the trajectory of any configuration eventually enters to a limit cycle for any US. (Steady state)

 $\tau_{\phi}(x)$: steps to reach the steady state starting from x with a US ϕ .

There are at most 2^n different configurations (finite graph), then the trajectory of any configuration eventually enters to a limit cycle for any US. (Steady state)

 $au_{\phi}(x)$: steps to reach the steady state starting from x with a US ϕ . $au_{\phi}(\mathcal{A}) = \max\{ au_{\phi}(x) : x \in \{0,1\}^n\}$ is the transient length of \mathcal{A} .

One Cell Prediction: OCP

One Cell Prediction: OCP Given:

One Cell Prediction: OCP

Given:

• An automaton $A = (G, \{0, 1\}, (f_i : i \in V)),$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One Cell Prediction: OCP

Given:

• An automaton $A = (G, \{0, 1\}, (f_i : i \in V)),$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$x \in \{0,1\}^n$$
 a configuration of \mathcal{A} ,

One Cell Prediction: OCP

Given:

• An automaton $A = (G, \{0, 1\}, (f_i : i \in V)),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- $x \in \{0,1\}^n$ a configuration of \mathcal{A} ,
- ϕ an updating scheme of \mathcal{A} ,

One Cell Prediction: OCP

Given:

- An automaton $A = (G, \{0, 1\}, (f_i : i \in V)),$
- $x \in \{0,1\}^n$ a configuration of \mathcal{A} ,
- ϕ an updating scheme of \mathcal{A} ,
- and $v \in V$ a vertex initially passive $(x_v = 0)$,

One Cell Prediction: OCP

Given:

- An automaton $A = (G, \{0, 1\}, (f_i : i \in V)),$
- $x \in \{0,1\}^n$ a configuration of \mathcal{A} ,
- ϕ an updating scheme of \mathcal{A} ,
- and $v \in V$ a vertex initially passive $(x_v = 0)$,

Does there exists $y \in T^{\phi}(x)$ such that $y_{\nu} = 1$?

Here we will consider only majority functions, i.e.:

$$f_i(x) = \begin{cases} 1 & \text{if } \sum_{j \in N(i)} x_i > \frac{|N(i)|}{2} \\ 0 & \text{if } \sum_{j \in N(i)} x_i \le \frac{|N(i)|}{2} \end{cases}$$

where N(i) is the set of neighbors of vertex *i*.

An automata network with this rule is called a majority automata.

Theorem

For parallel and sequential updating schemes, OCP is in P

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

For parallel and sequential updating schemes, OCP is in P

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea: Simulate A until v changes.

Theorem

For parallel and sequential updating schemes, OCP is in P

Idea: Simulate A until v changes.

For a configuration x(t)

Theorem

For parallel and sequential updating schemes, OCP is in P

Idea: Simulate A until v changes.

For a configuration x(t)

For any $i \in V$, $x_i(t+1)$ can be computed in $\mathcal{O}(n)$ time.

Theorem

For parallel and sequential updating schemes, OCP is in P

Idea: Simulate \mathcal{A} until v changes.

For a configuration x(t)

For any $i \in V$, $x_i(t+1)$ can be computed in $\mathcal{O}(n)$ time.

• x(t+1) can be computed in $\mathcal{O}(n^2)$ time.

Theorem

For parallel and sequential updating schemes, OCP is in P

Idea: Simulate \mathcal{A} until v changes.

For a configuration x(t)

For any $i \in V$, $x_i(t+1)$ can be computed in $\mathcal{O}(n)$ time.

• x(t+1) can be computed in $\mathcal{O}(n^2)$ time.

 $|T(x)| = |\{x(t) : t > 0\}|$ is poly(n)?

If $\{f_1, \ldots, f_n\}$ are threshold functions with weights matrix A and threshold vector b.

$$E_{syn}[x(t)] = -\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i(t-1) x_i(t) + \sum_{i=1}^{n} b_i(x_i(t) + x_i(t-1))$$

$$E_{seq}[x(t)] = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i(t) x_j(t) + \sum_{i \in V} b_i x_i(t)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

 \blacktriangleright |E(x)| is $\mathcal{O}(n^2)$

•
$$|E(x)|$$
 is $\mathcal{O}(n^2)$

$$\blacktriangleright \Delta_t E = E[x(t+1)] - E[x(t)] \le 0$$

(ロ)、(型)、(E)、(E)、 E) の(の)

•
$$|E(x)|$$
 is $\mathcal{O}(n^2)$

(ロ)、(型)、(E)、(E)、 E) の(の)

- ► |E(x)| is $\mathcal{O}(n^2)$
- $\Delta_t E = E[x(t+1)] E[x(t)] \le 0$ (E constant in cycles)
- Synchronous US → reach at most cycles of length 2.
 Sequential US → reach only fixed points.

► |E(x)| is $\mathcal{O}(n^2)$

•
$$\Delta_t E = E[x(t+1)] - E[x(t)] \le 0$$

(E constant in cycles)

Synchronous US → reach at most cycles of length 2.
 Sequential US → reach only fixed points.

▶
$$\tau(\mathcal{A})$$
 is $\mathcal{O}(n^3)$

Block sequential US

Block sequential US

Theorem

There is a block sequential update scheme in a majority automata, such that each block has cardinality 2 and the limit cycle has a super-polynomial length.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

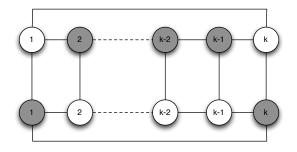
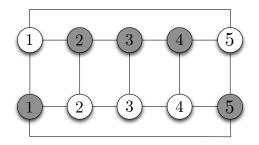
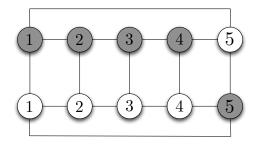


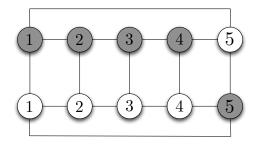
Figure: Ladder

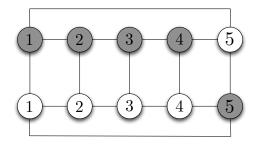
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

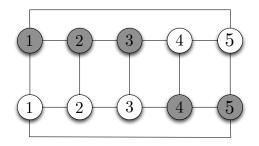


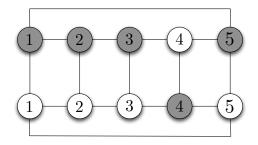
t = 0





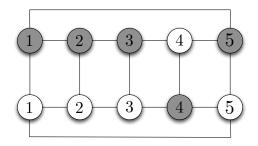


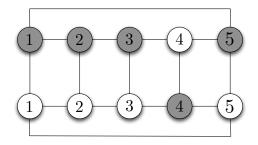


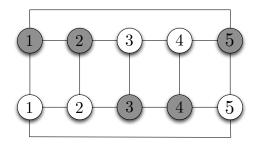


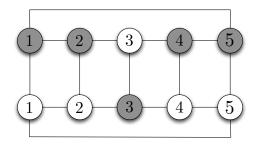
$$t = 0 - 5 = 1$$

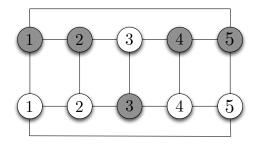
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ





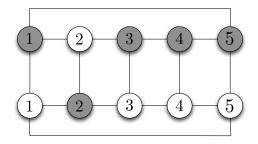






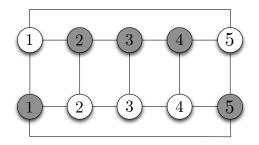
$$t = 1 - 5 = 2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ



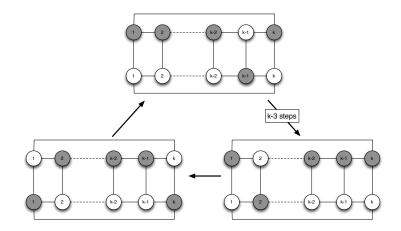
t = 3

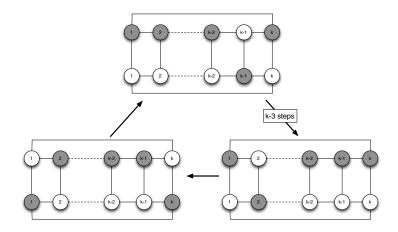
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - のへで



t = 4

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

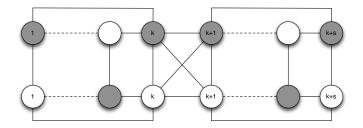




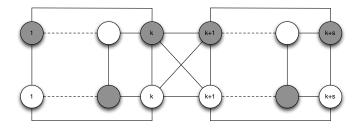
Limit cycle of length k-1

・ロト ・聞ト ・ヨト ・ヨト

- 2



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = ∽9.00



Limit cycle of length lcm(k-1, s-1)

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Let G the graph obtained from $\pi(m)$ ladders of sizes $(p_1 + 1), (p_2 + 1), \ldots, (p_{\pi(m)} + 1)$, where $\{p_1, p_2, \ldots, p_{\pi(m)}\}$ the first $\pi(m)$ primes.

Let G the graph obtained from $\pi(m)$ ladders of sizes $(p_1 + 1), (p_2 + 1), \ldots, (p_{\pi(m)} + 1)$, where $\{p_1, p_2, \ldots, p_{\pi(m)}\}$ the first $\pi(m)$ primes.

Then

Let G the graph obtained from $\pi(m)$ ladders of sizes $(p_1 + 1), (p_2 + 1), \ldots, (p_{\pi(m)} + 1)$, where $\{p_1, p_2, \ldots, p_{\pi(m)}\}$ the first $\pi(m)$ primes.

Then

$$V(G) \leq \sum_{i=1}^{\pi(m)} 2(p_i+1) \leq 2\pi(m)(m+1)$$

limit cycle of
$$G = lcm(p_1, \ldots, p_{\pi(m)}) = \prod_{i=1}^{\pi(m)} p_i = e^{\theta(m)}$$

where $\theta(m) = \sum_{i=1}^{\pi(m)} \log(pi)$.

Let G the graph obtained from $\pi(m)$ ladders of sizes $(p_1 + 1), (p_2 + 1), \ldots, (p_{\pi(m)} + 1)$, where $\{p_1, p_2, \ldots, p_{\pi(m)}\}$ the first $\pi(m)$ primes.

Then

$$V(G) \leq \sum_{i=1}^{\pi(m)} 2(p_i + 1) \leq 2\pi(m)(m+1)$$

limit cycle of
$$G = lcm(p_1, \ldots, p_{\pi(m)}) = \prod_{i=1}^{\pi(m)} p_i = e^{\theta(m)}$$

where $\theta(m) = \sum_{i=1}^{\pi(m)} \log(pi)$.

From the Prime Number Theorem:

$$lcm(p_1,\ldots,p_{\pi(m)}) \geq e^{\Omega(\sqrt{|V(G)|\log(|V(G)|)})}$$

For block sequential update schemes... **OCP** is in **P**?

Clearly **OCP** is in **P**-SPACE.

Clearly **OCP** is in **P**-SPACE.

Theorem

The problem **OCP** is NP-Hard for block sequential updating schemes.

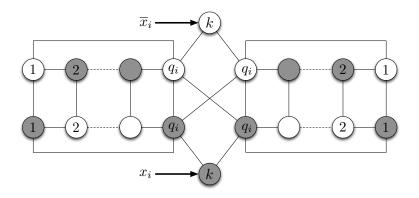
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Clearly **OCP** is in **P**-SPACE.

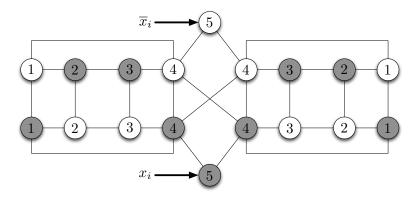
Theorem The problem **OCP** is NP-Hard for block sequential updating schemes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

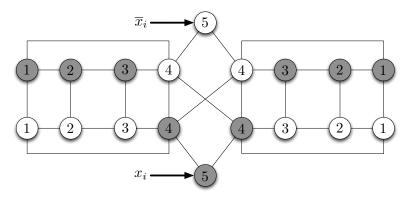
Proof: Reduce 3 – *SAT*.

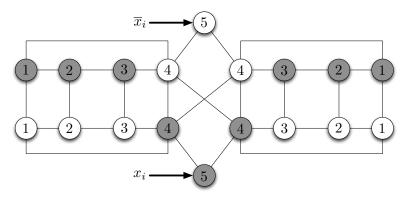


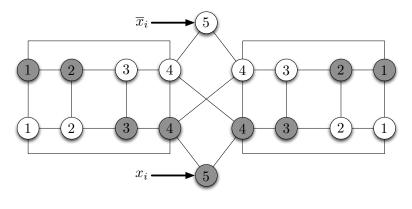
Gadget for variable x_i (positive and negative literals)

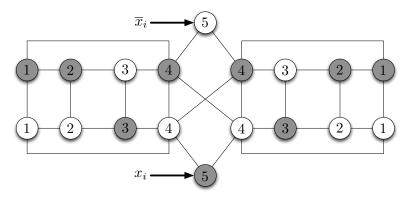


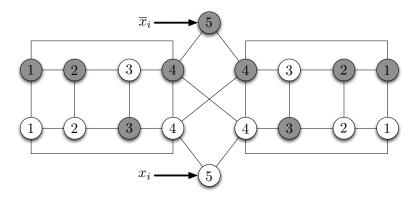
t = 0





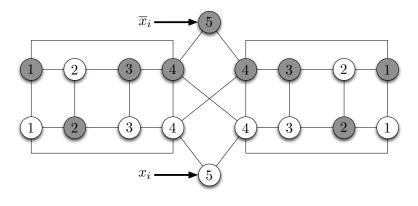






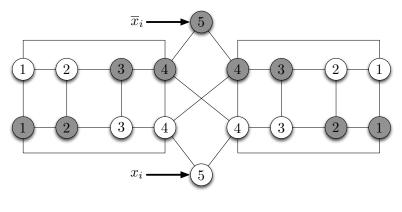
$$t = 0 - 5 = 1$$

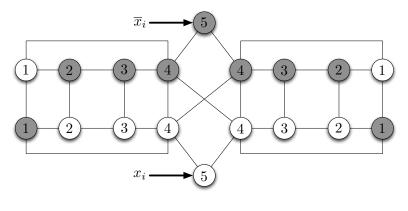
▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○



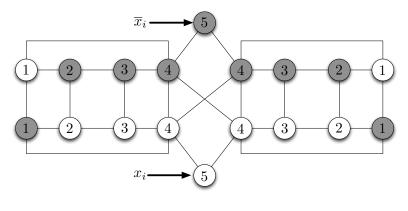
t = 2

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

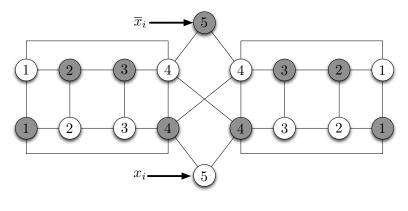


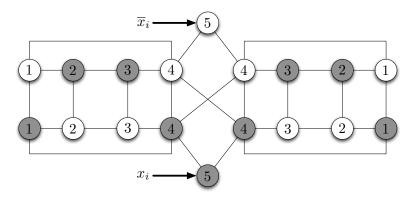


▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○



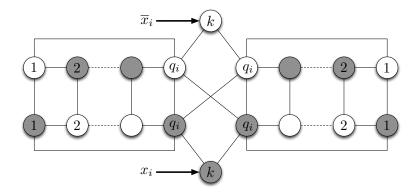
▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○



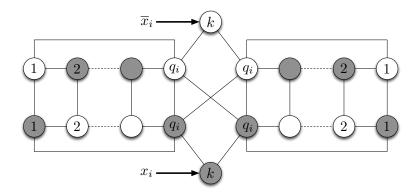


$$t = 2 - 5 = 3$$

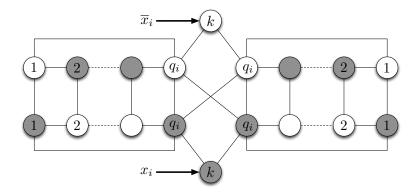
▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

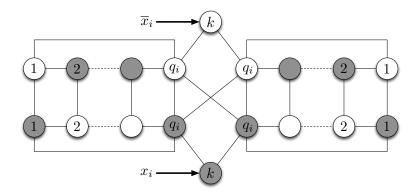


 $q_i = p_i + 1$ where p_i *i*-th prime



 $q_i = p_i + 1$ where p_i *i*-th prime

 $k = p_n + 2$



 $q_i = p_i + 1$ where p_i *i*-th prime

 $k = p_n + 2$

 $x_i = 1$ in steps multiple of p_i , and $x_i = 0$ otherwise

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then combination of values of variables $(x_1, x_2, x_3, ..., x_n)$, $x_i \in \{0, 1\}$ happens in step

$$p_1^{x_1} \times p_2^{x_2} \times \cdots \times p_n^{x_n}$$

Then combination of values of variables $(x_1, x_2, x_3, ..., x_n)$, $x_i \in \{0, 1\}$ happens in step

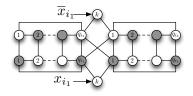
$$p_1^{x_1} \times p_2^{x_2} \times \cdots \times p_n^{x_n}$$

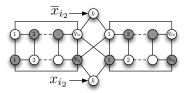
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

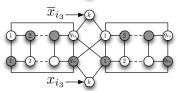
Any possible combination of input values can be simulated.

$$C_i = (x_{i_1} \vee \overline{x}_{i_2} \vee \overline{x}_{i_3})$$

$$C_i = (x_{i_1} \vee \overline{x}_{i_2} \vee \overline{x}_{i_3})$$

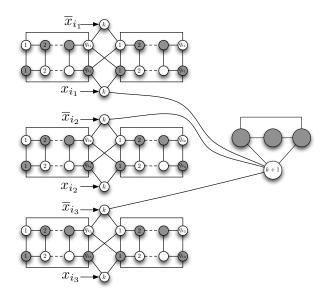


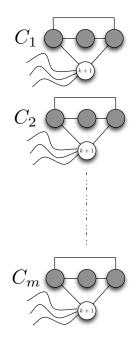




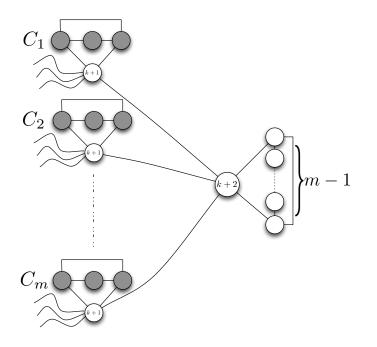
≣▶ ≣ ���

$$C_i = (x_{i_1} \vee \overline{x}_{i_2} \vee \overline{x}_{i_3})$$





) E ୬୦୦୦



ト 目 のへの

<ロ> <@> < E> < E> E のQの

For the majority automata:

For the majority automata:

► For synchronous and sequential US, **OCP** is in *P*.

(ロ)、(型)、(E)、(E)、 E) の(の)

For the majority automata:

 For synchronous and sequential US, OCP is in P. (is P-Complete)

For the majority automata:

- For synchronous and sequential US, OCP is in P. (is P-Complete)
- For the block sequential updating schemes the problem is NP-Hard.

For the majority automata:

- For synchronous and sequential US, OCP is in P. (is P-Complete)
- For the block sequential updating schemes the problem is NP-Hard.

(We conjecture that **OCP** is *PSPACE*-Complete.)

For the majority automata:

- For synchronous and sequential US, OCP is in P. (is P-Complete)
- ► For the block sequential updating schemes the problem is *NP*-Hard.

(We conjecture that **OCP** is *PSPACE*-Complete.)

An automata have a "**portable**" complexity if the complexity of the One Cell Prediction problem does not depend on the updating scheme.

```
(ex. majority with "frozen" active nodes).
```

For the majority automata:

- For synchronous and sequential US, OCP is in P. (is P-Complete)
- For the block sequential updating schemes the problem is NP-Hard.

(We conjecture that **OCP** is *PSPACE*-Complete.)

An automata have a "**portable**" complexity if the complexity of the One Cell Prediction problem does not depend on the updating scheme.

```
(ex. majority with "frozen" active nodes).
```

Danke!