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Automata network

An Automata Network is a triple A = (G ,Q, fi : i ∈ V ), where

I G = (V ,E ) is a simple undirected graph and V = {1, . . . , n}.
I Q the set of states (Q = {0, 1})
I fi : {0, 1}n → {0, 1} is the transition function associated to

the vertex i .

We say that vertices in state 1 are active while vertices in state 0
are passive.



Updating Schemes

An updating scheme (US) of the automaton A is a function

φ : V → {1 . . . |V |}

st. if u and v are vertices and φ(u) < φ(v) then the state of u is
updated before v , and if φ(u) = φ(v) then nodes u and v are
update at the same time.



Types of US

I Synchronous: φ = 1.
(All vertices are updated at the same time.)

I Sequential: φ = σ, where σ is a permutation of V .
(One vertex at a time)

I Block sequential:

V = ∪ki=1Vi , ∩ki=1Vi = ∅, φ|Vi
= i

The vertex set is partitioned into several subsets, st. into the
same set every vertex is updated at the same time, and
different subsets are updated sequentially in some order.
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Trajectory of a configuration

Let x ∈ {0, 1}n be a configuration of an automaton. The
trajectory Tφ(x) of x with the updating scheme φ is the set

Tφ(x) = {x(t) : t ≥ 0}

where x(0) = x and x(t + 1) is obtained from x(t) after every
vertex is updated according to φ.



The trajectory of x enters in a limit cycle of period p if
|T (x(t))| = p for some t ≥ 0.
(A cycle of period 1 is a fixed point.)

There are at most 2n different configurations (finite graph), then
the trajectory of any configuration eventually enters to a limit cycle
for any US. (Steady state)

τφ(x) : steps to reach the steady state starting from x with a US φ.

τφ(A) = max{τφ(x) : x ∈ {0, 1}n} is the transient length of A.
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Decision Problem

One Cell Prediction: OCP

Given:

I An automaton A = (G , {0, 1}, (fi : i ∈ V )),

I x ∈ {0, 1}n a configuration of A,

I φ an updating scheme of A,

I and v ∈ V a vertex initially passive (xv = 0),

Does there exists y ∈ Tφ(x) such that yv = 1?
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Majority automata

Here we will consider only majority functions, i.e.:

fi (x) =

{
1 if

∑
j∈N(i) xi >

|N(i)|
2

0 if
∑

j∈N(i) xi ≤ |N(i)|
2

where N(i) is the set of neighbors of vertex i .

An automata network with this rule is called a majority automata.



Parallel and sequential US.

Theorem
For parallel and sequential updating schemes, OCP is in P

Idea: Simulate A until v changes.

For a configuration x(t)

I For any i ∈ V , xi (t + 1) can be computed in O(n) time.

I x(t + 1) can be computed in O(n2) time.

|T (x)| = |{x(t) : t > 0}| is poly(n)?
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[E. Goles, F. Fogelman, D. Pellegrin]

If {f1, . . . , fn} are threshold functions with weights matrix A and
threshold vector b.

Esyn[x(t)] = −
n∑

i=1

n∑
j=1

aijxi (t − 1)xi (t) +
n∑

i=1

bi (xi (t) + xi (t − 1))

Eseq[x(t)] = −1

2

n∑
i=1

n∑
j=1

aijxi (t)xj(t) +
∑
i∈V

bixi (t)



[E. Goles, F. Fogelman, D. Pellegrin]

I |E (x)| is O(n2)

I ∆tE = E [x(t + 1)]− E [x(t)] ≤ 0
(E constant in cycles)

I Synchronous US → reach at most cycles of length 2.
Sequential US → reach only fixed points.

I τ(A) is O(n3)
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Block sequential US

Theorem
There is a block sequential update scheme in a majority automata,
such that each block has cardinality 2 and the limit cycle has a
super-polynomial length.
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Let m be a positive integer, and let π(m) the number of primes
not exceeding m.

Let G the graph obtained from π(m) ladders of sizes
(p1 + 1), (p2 + 1), . . . , (pπ(m) + 1), where {p1, p2 . . . , pπ(m)} the
first π(m) primes.

Then

V (G ) ≤
π(m)∑
i=1

2(pi + 1) ≤ 2π(m)(m + 1)

limit cycle of G = lcm(p1, . . . , pπ(m)) =

π(m)∏
i=1

pi = eθ(m)

where θ(m) =
∑π(m)

i=1 log(pi).

From the Prime Number Theorem:

lcm(p1, . . . , pπ(m)) ≥ eΩ(
√

|V (G)| log(|V (G)|))
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For block sequential update schemes...
OCP is in P?

we don’t think so...

Clearly OCP is in P-SPACE.

Theorem
The problem OCP is NP-Hard for block sequential updating
schemes.

Proof: Reduce 3− SAT .
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Then combination of values of variables (x1, x2, x3, . . . , xn),
xi ∈ {0, 1} happens in step

px1
1 × px2

2 × · · · × pxn
n

Any possible combination of input values can be simulated.
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Conclusions

For the majority automata:

I For synchronous and sequential US, OCP is in P.
(is P-Complete)

I For the block sequential updating schemes the problem is
NP-Hard.
(We conjecture that OCP is PSPACE -Complete. )

An automata have a “portable” complexity if the complexity of
the One Cell Prediction problem does not depend on the updating
scheme.
(ex. majority with ”frozen” active nodes).
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