
Computational complexity of majority automata
under different updating schemes

Pedro Montealegre 1 Eric Goles2

1Laboratoire d’Informatique Fondamentale d’Orlans
Université d’Orléans, Orléans, France

2Facultad de Ciencias y Tecnoloǵıa
Universidad Adolfo Ibáñez, Santiago, Chile

September 19, 2013

Automata network

An Automata Network is a triple A = (G ,Q, fi : i ∈ V), where

I G = (V ,E) is a simple undirected graph and V = {1, . . . , n}.
I Q the set of states (Q = {0, 1})
I fi : {0, 1}n → {0, 1} is the transition function associated to

the vertex i .

We say that vertices in state 1 are active while vertices in state 0
are passive.

Updating Schemes

An updating scheme (US) of the automaton A is a function

φ : V → {1 . . . |V |}

st. if u and v are vertices and φ(u) < φ(v) then the state of u is
updated before v , and if φ(u) = φ(v) then nodes u and v are
update at the same time.

Types of US

I Synchronous: φ = 1.
(All vertices are updated at the same time.)

I Sequential: φ = σ, where σ is a permutation of V .
(One vertex at a time)

I Block sequential:

V = ∪ki=1Vi , ∩ki=1Vi = ∅, φ|Vi
= i

The vertex set is partitioned into several subsets, st. into the
same set every vertex is updated at the same time, and
different subsets are updated sequentially in some order.

Types of US

I Synchronous: φ = 1.
(All vertices are updated at the same time.)

I Sequential: φ = σ, where σ is a permutation of V .
(One vertex at a time)

I Block sequential:

V = ∪ki=1Vi , ∩ki=1Vi = ∅, φ|Vi
= i

The vertex set is partitioned into several subsets, st. into the
same set every vertex is updated at the same time, and
different subsets are updated sequentially in some order.

Types of US

I Synchronous: φ = 1.
(All vertices are updated at the same time.)

I Sequential: φ = σ, where σ is a permutation of V .
(One vertex at a time)

I Block sequential:

V = ∪ki=1Vi , ∩ki=1Vi = ∅, φ|Vi
= i

The vertex set is partitioned into several subsets, st. into the
same set every vertex is updated at the same time, and
different subsets are updated sequentially in some order.

Types of US

I Synchronous: φ = 1.
(All vertices are updated at the same time.)

I Sequential: φ = σ, where σ is a permutation of V .
(One vertex at a time)

I Block sequential:

V = ∪ki=1Vi , ∩ki=1Vi = ∅, φ|Vi
= i

The vertex set is partitioned into several subsets, st. into the
same set every vertex is updated at the same time, and
different subsets are updated sequentially in some order.

Trajectory of a configuration

Let x ∈ {0, 1}n be a configuration of an automaton. The
trajectory Tφ(x) of x with the updating scheme φ is the set

Tφ(x) = {x(t) : t ≥ 0}

where x(0) = x and x(t + 1) is obtained from x(t) after every
vertex is updated according to φ.

The trajectory of x enters in a limit cycle of period p if
|T (x(t))| = p for some t ≥ 0.
(A cycle of period 1 is a fixed point.)

There are at most 2n different configurations (finite graph), then
the trajectory of any configuration eventually enters to a limit cycle
for any US. (Steady state)

τφ(x) : steps to reach the steady state starting from x with a US φ.

τφ(A) = max{τφ(x) : x ∈ {0, 1}n} is the transient length of A.

The trajectory of x enters in a limit cycle of period p if
|T (x(t))| = p for some t ≥ 0.
(A cycle of period 1 is a fixed point.)

There are at most 2n different configurations (finite graph), then
the trajectory of any configuration eventually enters to a limit cycle
for any US. (Steady state)

τφ(x) : steps to reach the steady state starting from x with a US φ.

τφ(A) = max{τφ(x) : x ∈ {0, 1}n} is the transient length of A.

The trajectory of x enters in a limit cycle of period p if
|T (x(t))| = p for some t ≥ 0.
(A cycle of period 1 is a fixed point.)

There are at most 2n different configurations (finite graph), then
the trajectory of any configuration eventually enters to a limit cycle
for any US. (Steady state)

τφ(x) : steps to reach the steady state starting from x with a US φ.

τφ(A) = max{τφ(x) : x ∈ {0, 1}n} is the transient length of A.

The trajectory of x enters in a limit cycle of period p if
|T (x(t))| = p for some t ≥ 0.
(A cycle of period 1 is a fixed point.)

There are at most 2n different configurations (finite graph), then
the trajectory of any configuration eventually enters to a limit cycle
for any US. (Steady state)

τφ(x) : steps to reach the steady state starting from x with a US φ.

τφ(A) = max{τφ(x) : x ∈ {0, 1}n} is the transient length of A.

Decision Problem

One Cell Prediction: OCP

Given:

I An automaton A = (G , {0, 1}, (fi : i ∈ V)),

I x ∈ {0, 1}n a configuration of A,

I φ an updating scheme of A,

I and v ∈ V a vertex initially passive (xv = 0),

Does there exists y ∈ Tφ(x) such that yv = 1?

Decision Problem

One Cell Prediction: OCP
Given:

I An automaton A = (G , {0, 1}, (fi : i ∈ V)),

I x ∈ {0, 1}n a configuration of A,

I φ an updating scheme of A,

I and v ∈ V a vertex initially passive (xv = 0),

Does there exists y ∈ Tφ(x) such that yv = 1?

Decision Problem

One Cell Prediction: OCP
Given:

I An automaton A = (G , {0, 1}, (fi : i ∈ V)),

I x ∈ {0, 1}n a configuration of A,

I φ an updating scheme of A,

I and v ∈ V a vertex initially passive (xv = 0),

Does there exists y ∈ Tφ(x) such that yv = 1?

Decision Problem

One Cell Prediction: OCP
Given:

I An automaton A = (G , {0, 1}, (fi : i ∈ V)),

I x ∈ {0, 1}n a configuration of A,

I φ an updating scheme of A,

I and v ∈ V a vertex initially passive (xv = 0),

Does there exists y ∈ Tφ(x) such that yv = 1?

Decision Problem

One Cell Prediction: OCP
Given:

I An automaton A = (G , {0, 1}, (fi : i ∈ V)),

I x ∈ {0, 1}n a configuration of A,

I φ an updating scheme of A,

I and v ∈ V a vertex initially passive (xv = 0),

Does there exists y ∈ Tφ(x) such that yv = 1?

Decision Problem

One Cell Prediction: OCP
Given:

I An automaton A = (G , {0, 1}, (fi : i ∈ V)),

I x ∈ {0, 1}n a configuration of A,

I φ an updating scheme of A,

I and v ∈ V a vertex initially passive (xv = 0),

Does there exists y ∈ Tφ(x) such that yv = 1?

Decision Problem

One Cell Prediction: OCP
Given:

I An automaton A = (G , {0, 1}, (fi : i ∈ V)),

I x ∈ {0, 1}n a configuration of A,

I φ an updating scheme of A,

I and v ∈ V a vertex initially passive (xv = 0),

Does there exists y ∈ Tφ(x) such that yv = 1?

Majority automata

Here we will consider only majority functions, i.e.:

fi (x) =

{
1 if

∑
j∈N(i) xi >

|N(i)|
2

0 if
∑

j∈N(i) xi ≤ |N(i)|
2

where N(i) is the set of neighbors of vertex i .

An automata network with this rule is called a majority automata.

Parallel and sequential US.

Theorem
For parallel and sequential updating schemes, OCP is in P

Idea: Simulate A until v changes.

For a configuration x(t)

I For any i ∈ V , xi (t + 1) can be computed in O(n) time.

I x(t + 1) can be computed in O(n2) time.

|T (x)| = |{x(t) : t > 0}| is poly(n)?

Parallel and sequential US.

Theorem
For parallel and sequential updating schemes, OCP is in P

Idea: Simulate A until v changes.

For a configuration x(t)

I For any i ∈ V , xi (t + 1) can be computed in O(n) time.

I x(t + 1) can be computed in O(n2) time.

|T (x)| = |{x(t) : t > 0}| is poly(n)?

Parallel and sequential US.

Theorem
For parallel and sequential updating schemes, OCP is in P

Idea: Simulate A until v changes.

For a configuration x(t)

I For any i ∈ V , xi (t + 1) can be computed in O(n) time.

I x(t + 1) can be computed in O(n2) time.

|T (x)| = |{x(t) : t > 0}| is poly(n)?

Parallel and sequential US.

Theorem
For parallel and sequential updating schemes, OCP is in P

Idea: Simulate A until v changes.

For a configuration x(t)

I For any i ∈ V , xi (t + 1) can be computed in O(n) time.

I x(t + 1) can be computed in O(n2) time.

|T (x)| = |{x(t) : t > 0}| is poly(n)?

Parallel and sequential US.

Theorem
For parallel and sequential updating schemes, OCP is in P

Idea: Simulate A until v changes.

For a configuration x(t)

I For any i ∈ V , xi (t + 1) can be computed in O(n) time.

I x(t + 1) can be computed in O(n2) time.

|T (x)| = |{x(t) : t > 0}| is poly(n)?

Parallel and sequential US.

Theorem
For parallel and sequential updating schemes, OCP is in P

Idea: Simulate A until v changes.

For a configuration x(t)

I For any i ∈ V , xi (t + 1) can be computed in O(n) time.

I x(t + 1) can be computed in O(n2) time.

|T (x)| = |{x(t) : t > 0}| is poly(n)?

[E. Goles, F. Fogelman, D. Pellegrin]

If {f1, . . . , fn} are threshold functions with weights matrix A and
threshold vector b.

Esyn[x(t)] = −
n∑

i=1

n∑
j=1

aijxi (t − 1)xi (t) +
n∑

i=1

bi (xi (t) + xi (t − 1))

Eseq[x(t)] = −1

2

n∑
i=1

n∑
j=1

aijxi (t)xj(t) +
∑
i∈V

bixi (t)

[E. Goles, F. Fogelman, D. Pellegrin]

I |E (x)| is O(n2)

I ∆tE = E [x(t + 1)]− E [x(t)] ≤ 0
(E constant in cycles)

I Synchronous US → reach at most cycles of length 2.
Sequential US → reach only fixed points.

I τ(A) is O(n3)

[E. Goles, F. Fogelman, D. Pellegrin]

I |E (x)| is O(n2)

I ∆tE = E [x(t + 1)]− E [x(t)] ≤ 0
(E constant in cycles)

I Synchronous US → reach at most cycles of length 2.
Sequential US → reach only fixed points.

I τ(A) is O(n3)

[E. Goles, F. Fogelman, D. Pellegrin]

I |E (x)| is O(n2)

I ∆tE = E [x(t + 1)]− E [x(t)] ≤ 0

(E constant in cycles)

I Synchronous US → reach at most cycles of length 2.
Sequential US → reach only fixed points.

I τ(A) is O(n3)

[E. Goles, F. Fogelman, D. Pellegrin]

I |E (x)| is O(n2)

I ∆tE = E [x(t + 1)]− E [x(t)] ≤ 0
(E constant in cycles)

I Synchronous US → reach at most cycles of length 2.
Sequential US → reach only fixed points.

I τ(A) is O(n3)

[E. Goles, F. Fogelman, D. Pellegrin]

I |E (x)| is O(n2)

I ∆tE = E [x(t + 1)]− E [x(t)] ≤ 0
(E constant in cycles)

I Synchronous US → reach at most cycles of length 2.
Sequential US → reach only fixed points.

I τ(A) is O(n3)

[E. Goles, F. Fogelman, D. Pellegrin]

I |E (x)| is O(n2)

I ∆tE = E [x(t + 1)]− E [x(t)] ≤ 0
(E constant in cycles)

I Synchronous US → reach at most cycles of length 2.
Sequential US → reach only fixed points.

I τ(A) is O(n3)

Block sequential US

Theorem
There is a block sequential update scheme in a majority automata,
such that each block has cardinality 2 and the limit cycle has a
super-polynomial length.

Block sequential US

Theorem
There is a block sequential update scheme in a majority automata,
such that each block has cardinality 2 and the limit cycle has a
super-polynomial length.

1

1

2

2

k

k

k-1

k-1

k-2

k-2

Figure: Ladder

1

1 2

2 4

4

3

3 5

5

t = 0

1

1 2

2 4

4

3

3 5

5

t = 0− 1

1

1 2

2 4

4

3

3 5

5

t = 0− 2

1

1 2

2 4

4

3

3 5

5

t = 0− 3

1

1 2

2 4

4

3

3 5

5

t = 0− 4

1

1 2

2 4

4

3

3 5

5

t = 0− 5 = 1

1

1 2

2 4

4

3

3 5

5

t = 1− 1

1

1 2

2 4

4

3

3 5

5

t = 1− 2

1

1 2

2 4

4

3

3 5

5

t = 1− 3

1

1 2

2 4

4

3

3 5

5

t = 1− 4

1

1 2

2 4

4

3

3 5

5

t = 1− 5 = 2

1

1 2

2 4

4

3

3 5

5

t = 3

1

1 2

2 4

4

3

3 5

5

t = 4

1

1

2

2

k

k

k-1

k-1

k-2

k-2

k-3 steps

1

1

2

2

k

k

k-1

k-1

k-2

k-2

1

1

2

2

k

k

k-1

k-1

k-2

k-2

Limit cycle of length k − 1

1

1

2

2

k

k

k-1

k-1

k-2

k-2

k-3 steps

1

1

2

2

k

k

k-1

k-1

k-2

k-2

1

1

2

2

k

k

k-1

k-1

k-2

k-2

Limit cycle of length k − 1

1

1

k

k

k+1

k+1

k+s

k+s

Limit cycle of length lcm(k − 1, s − 1)

1

1

k

k

k+1

k+1

k+s

k+s

Limit cycle of length lcm(k − 1, s − 1)

Let m be a positive integer, and let π(m) the number of primes
not exceeding m.

Let G the graph obtained from π(m) ladders of sizes
(p1 + 1), (p2 + 1), . . . , (pπ(m) + 1), where {p1, p2 . . . , pπ(m)} the
first π(m) primes.

Then

V (G) ≤
π(m)∑
i=1

2(pi + 1) ≤ 2π(m)(m + 1)

limit cycle of G = lcm(p1, . . . , pπ(m)) =

π(m)∏
i=1

pi = eθ(m)

where θ(m) =
∑π(m)

i=1 log(pi).

From the Prime Number Theorem:

lcm(p1, . . . , pπ(m)) ≥ eΩ(
√

|V (G)| log(|V (G)|))

Let m be a positive integer, and let π(m) the number of primes
not exceeding m.

Let G the graph obtained from π(m) ladders of sizes
(p1 + 1), (p2 + 1), . . . , (pπ(m) + 1), where {p1, p2 . . . , pπ(m)} the
first π(m) primes.

Then

V (G) ≤
π(m)∑
i=1

2(pi + 1) ≤ 2π(m)(m + 1)

limit cycle of G = lcm(p1, . . . , pπ(m)) =

π(m)∏
i=1

pi = eθ(m)

where θ(m) =
∑π(m)

i=1 log(pi).

From the Prime Number Theorem:

lcm(p1, . . . , pπ(m)) ≥ eΩ(
√

|V (G)| log(|V (G)|))

Let m be a positive integer, and let π(m) the number of primes
not exceeding m.

Let G the graph obtained from π(m) ladders of sizes
(p1 + 1), (p2 + 1), . . . , (pπ(m) + 1), where {p1, p2 . . . , pπ(m)} the
first π(m) primes.

Then

V (G) ≤
π(m)∑
i=1

2(pi + 1) ≤ 2π(m)(m + 1)

limit cycle of G = lcm(p1, . . . , pπ(m)) =

π(m)∏
i=1

pi = eθ(m)

where θ(m) =
∑π(m)

i=1 log(pi).

From the Prime Number Theorem:

lcm(p1, . . . , pπ(m)) ≥ eΩ(
√

|V (G)| log(|V (G)|))

Let m be a positive integer, and let π(m) the number of primes
not exceeding m.

Let G the graph obtained from π(m) ladders of sizes
(p1 + 1), (p2 + 1), . . . , (pπ(m) + 1), where {p1, p2 . . . , pπ(m)} the
first π(m) primes.

Then

V (G) ≤
π(m)∑
i=1

2(pi + 1) ≤ 2π(m)(m + 1)

limit cycle of G = lcm(p1, . . . , pπ(m)) =

π(m)∏
i=1

pi = eθ(m)

where θ(m) =
∑π(m)

i=1 log(pi).

From the Prime Number Theorem:

lcm(p1, . . . , pπ(m)) ≥ eΩ(
√

|V (G)| log(|V (G)|))

Let m be a positive integer, and let π(m) the number of primes
not exceeding m.

Let G the graph obtained from π(m) ladders of sizes
(p1 + 1), (p2 + 1), . . . , (pπ(m) + 1), where {p1, p2 . . . , pπ(m)} the
first π(m) primes.

Then

V (G) ≤
π(m)∑
i=1

2(pi + 1) ≤ 2π(m)(m + 1)

limit cycle of G = lcm(p1, . . . , pπ(m)) =

π(m)∏
i=1

pi = eθ(m)

where θ(m) =
∑π(m)

i=1 log(pi).

From the Prime Number Theorem:

lcm(p1, . . . , pπ(m)) ≥ eΩ(
√

|V (G)| log(|V (G)|))

Let m be a positive integer, and let π(m) the number of primes
not exceeding m.

Let G the graph obtained from π(m) ladders of sizes
(p1 + 1), (p2 + 1), . . . , (pπ(m) + 1), where {p1, p2 . . . , pπ(m)} the
first π(m) primes.

Then

V (G) ≤
π(m)∑
i=1

2(pi + 1) ≤ 2π(m)(m + 1)

limit cycle of G = lcm(p1, . . . , pπ(m)) =

π(m)∏
i=1

pi = eθ(m)

where θ(m) =
∑π(m)

i=1 log(pi).

From the Prime Number Theorem:

lcm(p1, . . . , pπ(m)) ≥ eΩ(
√

|V (G)| log(|V (G)|))

For block sequential update schemes...
OCP is in P?

we don’t think so...

Clearly OCP is in P-SPACE.

Theorem
The problem OCP is NP-Hard for block sequential updating
schemes.

Proof: Reduce 3− SAT .

For block sequential update schemes...
OCP is in P? we don’t think so...

Clearly OCP is in P-SPACE.

Theorem
The problem OCP is NP-Hard for block sequential updating
schemes.

Proof: Reduce 3− SAT .

For block sequential update schemes...
OCP is in P? we don’t think so...

Clearly OCP is in P-SPACE.

Theorem
The problem OCP is NP-Hard for block sequential updating
schemes.

Proof: Reduce 3− SAT .

For block sequential update schemes...
OCP is in P? we don’t think so...

Clearly OCP is in P-SPACE.

Theorem
The problem OCP is NP-Hard for block sequential updating
schemes.

Proof: Reduce 3− SAT .

For block sequential update schemes...
OCP is in P? we don’t think so...

Clearly OCP is in P-SPACE.

Theorem
The problem OCP is NP-Hard for block sequential updating
schemes.

Proof: Reduce 3− SAT .

k

qi

qi

k

1

1 2

2 2

2

xi

xi

1

1

qi

qi

Gadget for variable xi (positive and negative literals)

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 0

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 0− 1

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 0− 2

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 0− 3

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 0− 4

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 0− 5 = 1

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 2

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 2− 1

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 2− 2

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 2− 3

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 2− 4

1

1 2

2 2

2

xi

xi

1

13

3

3

3

4

4

4

4

5

5

t = 2− 5 = 3

k

qi

qi

k

1

1 2

2 2

2

xi

xi

1

1

qi

qi

qi = pi + 1 where pi i-th prime

k = pn + 2

xi = 1 in steps multiple of pi , and xi = 0 otherwise

k

qi

qi

k

1

1 2

2 2

2

xi

xi

1

1

qi

qi

qi = pi + 1 where pi i-th prime

k = pn + 2

xi = 1 in steps multiple of pi , and xi = 0 otherwise

k

qi

qi

k

1

1 2

2 2

2

xi

xi

1

1

qi

qi

qi = pi + 1 where pi i-th prime

k = pn + 2

xi = 1 in steps multiple of pi , and xi = 0 otherwise

k

qi

qi

k

1

1 2

2 2

2

xi

xi

1

1

qi

qi

qi = pi + 1 where pi i-th prime

k = pn + 2

xi = 1 in steps multiple of pi , and xi = 0 otherwise

Then combination of values of variables (x1, x2, x3, . . . , xn),
xi ∈ {0, 1} happens in step

px1
1 × px2

2 × · · · × pxn
n

Any possible combination of input values can be simulated.

Then combination of values of variables (x1, x2, x3, . . . , xn),
xi ∈ {0, 1} happens in step

px1
1 × px2

2 × · · · × pxn
n

Any possible combination of input values can be simulated.

Ci = (xi1 ∨ x i2 ∨ x i3)

k + 1

Ci = (xi1 ∨ x i2 ∨ x i3)

k + 1

k

qi3

qi3

k

qi3

qi31

1 1

1

2

2 2

2

xi3

k

qi2

qi2

k

qi2

qi21

1 1

1

2

2 2

2

xi2

xi2

k

qi1

qi1

k

qi1

qi11

1 1

1

2

2 2

2

xi1

xi1

xi3

Ci = (xi1 ∨ x i2 ∨ x i3)

k + 1

k

qi3

qi3

k

qi3

qi31

1 1

1

2

2 2

2

xi3

k

qi2

qi2

k

qi2

qi21

1 1

1

2

2 2

2

xi2

xi2

k

qi1

qi1

k

qi1

qi11

1 1

1

2

2 2

2

xi1

xi1

xi3

k + 1

k + 1

k + 1

C1

C2

Cm

k + 1

k + 1

k + 1

C1

C2

Cm

k + 2 }m � 1

Conclusions

For the majority automata:

I For synchronous and sequential US, OCP is in P.
(is P-Complete)

I For the block sequential updating schemes the problem is
NP-Hard.
(We conjecture that OCP is PSPACE -Complete.)

An automata have a “portable” complexity if the complexity of
the One Cell Prediction problem does not depend on the updating
scheme.
(ex. majority with ”frozen” active nodes).

Danke!

Conclusions

For the majority automata:

I For synchronous and sequential US, OCP is in P.
(is P-Complete)

I For the block sequential updating schemes the problem is
NP-Hard.
(We conjecture that OCP is PSPACE -Complete.)

An automata have a “portable” complexity if the complexity of
the One Cell Prediction problem does not depend on the updating
scheme.
(ex. majority with ”frozen” active nodes).

Danke!

Conclusions

For the majority automata:

I For synchronous and sequential US, OCP is in P.

(is P-Complete)

I For the block sequential updating schemes the problem is
NP-Hard.
(We conjecture that OCP is PSPACE -Complete.)

An automata have a “portable” complexity if the complexity of
the One Cell Prediction problem does not depend on the updating
scheme.
(ex. majority with ”frozen” active nodes).

Danke!

Conclusions

For the majority automata:

I For synchronous and sequential US, OCP is in P.
(is P-Complete)

I For the block sequential updating schemes the problem is
NP-Hard.
(We conjecture that OCP is PSPACE -Complete.)

An automata have a “portable” complexity if the complexity of
the One Cell Prediction problem does not depend on the updating
scheme.
(ex. majority with ”frozen” active nodes).

Danke!

Conclusions

For the majority automata:

I For synchronous and sequential US, OCP is in P.
(is P-Complete)

I For the block sequential updating schemes the problem is
NP-Hard.

(We conjecture that OCP is PSPACE -Complete.)

An automata have a “portable” complexity if the complexity of
the One Cell Prediction problem does not depend on the updating
scheme.
(ex. majority with ”frozen” active nodes).

Danke!

Conclusions

For the majority automata:

I For synchronous and sequential US, OCP is in P.
(is P-Complete)

I For the block sequential updating schemes the problem is
NP-Hard.
(We conjecture that OCP is PSPACE -Complete.)

An automata have a “portable” complexity if the complexity of
the One Cell Prediction problem does not depend on the updating
scheme.
(ex. majority with ”frozen” active nodes).

Danke!

Conclusions

For the majority automata:

I For synchronous and sequential US, OCP is in P.
(is P-Complete)

I For the block sequential updating schemes the problem is
NP-Hard.
(We conjecture that OCP is PSPACE -Complete.)

An automata have a “portable” complexity if the complexity of
the One Cell Prediction problem does not depend on the updating
scheme.
(ex. majority with ”frozen” active nodes).

Danke!

Conclusions

For the majority automata:

I For synchronous and sequential US, OCP is in P.
(is P-Complete)

I For the block sequential updating schemes the problem is
NP-Hard.
(We conjecture that OCP is PSPACE -Complete.)

An automata have a “portable” complexity if the complexity of
the One Cell Prediction problem does not depend on the updating
scheme.
(ex. majority with ”frozen” active nodes).

Danke!

	Introduction
	Parallel and sequential us.

