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Morphogenesis in Nature

src: www.images-photos-plongee.com src: touslesinsolites.wordpress.com

� Such a system, although it may originally be quite homogeneous,

may later develop a pattern or structure due to an instability of the

homogeneous equilibrium, which is triggered o� by random

disturbances.�

Turing, 1952

http://www.images-photos-plongee.com/
http://touslesinsolites.wordpress.com/tag/belousov-zhabotinsky/


Spatial vs. temporal symmetry breaking

src: www.kazeo.com

sand riddles

vs.

pendulum synchronisation:
Huygens (1629-1695),
Leibniz (1646-1716)

src: www.nd-de-graces.com

http://www.kazeo.com/sites/fr/photos/130/rides-de-sable-2_130668-XL.jpg
http://www.nd-de-graces.com


Three Turing symmetry breaking games

The state game :
Design a rule that acts similarly on 0 and 1 such that:
the system (almost always) reaches an all-0 or all-1 �xed point

The pattern game:
Design a rule that such that:
the system (almost always) reaches 010101... or a checkerboard

The synchronization game:
Design a rule that such that:
the system (almost always) reaches a 0↔ 1 cycle



Tutorial map

State game in 1D, asynch. rules:

I rule space and notations

I majority

I shift

I FNE & Tra�c

State game in 1D, PCA rules:

I stochastic blend rules

State game in 2D:

I Toom's Rule

Pattern game:

I �Buren� rules

Synchronisation game:

I synchronising rules



Majority rule : coupon collector

Rule : Take the state that is most present in your neighbourhood
A B C D E F G H
000 001 100 101 010 011 110 111
0 0 0 1 0 1 1 1

I rule E

1. remove isolated 1s (010)
2. for k isolated ones (010) , prob. to remove is k

n

3. average steps before convergence:

Tk(n) =
n

k
+

n

k − 1
+ . . .+

n

1
∼ n ln n

I Rule DE : similar with possible decrease by 3.

t 0 1 0 1 0

t + 1 0 1 1 1 0

 Fast (too fast ?) convergence to �xed point : other neighb. ?

Back
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The �symmetric� majority rule in any dimension

Lemma (Marcovici et al., EJP, 2013)

Consider the majority rule on Zd with a symmetric neighbourhood

that includes the cell itself: N = {e0, e1, . . . , ek , e−1, . . . , e−k},
with : e0 = ~0 and ∀i , ei ∈ Zd ,

then the con�guration

where all cells are in state 0 except those that are a linear

combination of the ei is a �xed point.

example :
e1 = (1, 0),
e2 = (1, 1),
e3 = (−1, 1).

Back



The shift : the two-zones case

+ -

0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

ε ε

ε εε

1 1

0 1 2 n−1 n

1−2ε 1−2ε 1−2ε

ε

Markov
chain: number of cells in state 1, update prob. ε = 1/n
�Step-forward� method: T0 = 0 , Tn = 0

Ti = ε · (1 + Ti+1) + ε · (1 + Ti−1) + (1− 2ε) · (1 + Ti )

which solves as:

Ti =
i(n − i)

2ε
.



The shift case... with multiple zones

+ - + - + - + -

0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0

Same �Markov chain� but with ε(t) ≥ 1/n !
ε ε

ε εε

1 1

0 1 2 n−1 n

1−2ε 1−2ε 1−2ε

ε

Process is a martingale: E [Xt+1|Xt ] = Xt thus: ∀t,E [Xt ] = X0

Application: T time to reach a �xed point

E [XT ] = 0 · Pr[XT = 0] + n.Pr[XT = n]

which leads to:
Pr[XT = n] = X0/n

 What about the convergence time ?



Central Lemma

For a stochastic process Xt , if:

I Xt is a martingale in {0, · · · , k},
I for Xt /∈ {0, k},

proba to incr. or to decr. Xt by 1 is greater than ε,

then, average conv. time to {0, k} upper-bounded by: X0(k−X0)
2ε

when X0 and k scale as n, WECT = Θ(n2): square scaling

Evolutions of BDEF - 170

proof : examine Yt = Xt
2 − 2 · ε · t

Back



Flip-if-not equal and tra�c

Lemma applies, but di�erent functions:
BCDEFG: Xt = |x t |1 + Z (x0) + Dt − Et

Evolutions of BCDEFG - 178 Evolutions of CDEG - 184

Quantitatively better, but not qualitatively : square scaling with n

Back



Fuk± Density Classi�er

For p ∈ (0, 1/2], the local rule C1 has transition table:

(x , y , z) 000 001 010 011 100 101 110 111

f (x , y , z) 0 p 1− 2p 1− p p 2p 1− p 1

What is this rule doing ? hint : use the T-code...

Interpretation: apply, for each cell independently:

I a left shift with probability p

I a right shift with probability p

I stay in the same state with probability 1− 2p
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A convergence lemma

If

I (x t)t∈N is the evolution of stochastic CA with I.C. x ∈ En
I M a mapping M : En → {0, . . . ,m}
I (Xt) sequence of rand. var. ∀t,Xt = M(x t).

I the stochastic process (Xt) is a martingale on {0, . . . ,m}, that
is, for a �ltration Ft adapted to (Xt), E

{
∆Xt+1 |Ft

}
= 0,

I Xt ∈ {1, . . . ,m − 1} =⇒ var

{
∆Xt+1

}
> v ,

then:
Pr{XT = m} =

q

m

and the absorbing time of the process
T (x) = min{t : Xt = 0 or Xt = m} is �nite and obeys:

E{T (x)} ≤ q(m − q)

v
≤ m2

4v

where q = E{X0} = M(x).



Application to Fuk± rule

Lemma applies for m = n, v = p and M = |x |1.
=> proba. to attain 1∗ is equal to the initial density.
Time to attain a �xed point ? For n = 149:
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Fuks’ rule

surprise : increase for p → 1/2 ! (checkerboards)
open problem : �nd the optimal value for p
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Schüle's rule
For ε ∈ (0, 1], Schüle's rule C2 has transitions:

(x , y , z) 000 001 010 011 100 101 110 111

f (x , y , z) 0 1− ε 1− ε ε 1− ε ε ε 1

Interpret this rule

Apply, for each cell independently:

I a majority rule with probability ε

I a XOR (on 3 neighbours) with probability 1− ε

3 evolutions of the rule C2 with ε = 0.8
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Properties & Results

For ε = 2/3, lemma applies with v = ε(1− ε) and m = n.

=> proba to go to 1 is still equal to the density and

Tconv ≤
n2

4ε(1− ε)
≤ 9/2 · n2

(authors used mean-�eld hypothesis for the density result)

For ε > 2/3, the convergence to extremities is slightly improved:
better than Fuk± rule, but time still scales quadratically with n.

Back



A new rule for the density classi�cation

For η ∈ (0, 1], consider the rule C3:

(x , y , z) 000 001 010 011 100 101 110 111

f (x , y , z) 0 0 0 1 1− η 1 η 1

Interpret this rule

Apply, for each cell independently:

I the majority rule with proba. 1− η
I the �tra�c� rule with proba. η

claim: system solves the DCP with an arbitrary precision

I stochastic system but some con�g. are perfectly classi�ed

I for η → 0, these con�gurations are attained with proba. that
approaches 1
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Archipelagos and the Tra�c rule

1-archipelago: all 1s isolated
0 0 1 0 1 0 0 0 t=3

0 1 0 1 0 1 0 0 t=2

0 1 1 0 1 0 0 0 t=1

0 1 1 1 0 0 0 0 t=0

bn/2c steps, con�g. is
archipelago !

Tra�c rule / C3 rule

C3 and Tra�c: successor of a q-archipelago is a q-archipelago
di�erence between C3 and Tra�c is on some isolated 0s or 1s: they
�vanish� with proba. ε

archipelagos are well-classi�ed with probability 1 !

As η → 0, we get closer to the Tra�c rule, reach an archipelago.
Then, take all the time needed to go to the �right� �xed point.



And... empirical qualities and convergence times
Results for n = 149 and 10 000 samples.
model setting Qb (in%) Qd (in%) Tb

C1 p = 0.48 53.3 75.0 2652

C1 p = 0.5 53.3 75.0 8985

C2 ε = 0.9 56.6 85.8 11887

C3 η = 0.1 82.4 98.1 517

C3 η = 0.01 91.0 99.1 4950
C3 η = 0.005 93.4 99.3 9981
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open problem: establish the linear convergence time
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The synchronisation problem

objective :

from any initial condition,
reach a �blinking uniform� con�guration,
i.e.,
x → . . . 0→ 1→ 0→ . . . .

di�cult ?

0 and 1 are not quiescent, the T-code contains A and H
any PCA with �positive rates� (other transitions) solves the problem

but... �e�cient� solutions ?

idea: re-use the DCP solutions with a �negative� e�ect
+ plenty of other combinations

 open problem: is there a rule with a linear convergence ?
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The pattern Turing sym. breaking game (Buren game ?)

obj. :
from any initial condition,
converge to (01)∗ or to (10)∗

take even n

colonnes de Buren src: lejdd.fr

Show the �duality� of ECA flip-if-not-equal and ABCFGH - 23

other solutions : BCFG - 150 and BCGH - 30
phase transitions for α-asynch. updating

http://www.lejdd.fr/Culture/Beaux-Arts/Images/Janvier-2010/colonnes-de-buren-renovees-162841


Openings...

stochastic CAs can be used for solving various problems...
many simple problems remain open (classi�cation)
Computer science has been focused on rapidity

 is there another path ( robustness ? )

creativity =
taking advantage of the constructive role of randomness ?

beyond the deterministic sequential �machine�...

there is another Turing !


