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A one-dimensional cellular automaton

f : SZ −→ SZ

is surjective if there are no Garden-of-Eden configurations.

Examples of surjective CA:

• All injective CA (a.k.a. reversible CA)

• All permutive CA



No structure theorem is known to characterize local rules

that make the CA surjective.

We show that in some cases (size two neighborhood, prime

number of states) all surjective CA are permutive.



We consider two parameters: Number of states n and the

neighborhood range m

A range m local rule of a CA f is a function

F : Sm −→ S

such that for all c ∈ SZ and all i ∈ Z

f(c)i = F (c[i−k,i−k+m)).

(Constant k aligns the neighborhood relative to the cell.)



The case m = 2 is the smallest non-trivial neighborhood range.

In pictures, we usually stagger the rows to make the

neighborhood symmetric:



A CA is left permutive it has a local rule F with the

property that changing the state of the leftmost neighbor

changes the image under F .
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Right permutive CA are defined analogously.

A CA is permutive if it is left or right permutive.



Example. The XOR automaton has state set S = {0, 1},

neighborhood range m = 2 and local rule

F (a, b) = a+ b (mod 2).

It is both left and right permutive.
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Theorem. Let f be a one-dimensional surjective CA with

neighborhood range m = 2 and with a prime number n of

states. Then f is permutive.

In the proof we use some old results concerning transitive

configurations on surjective CA.



A right infinite x ∈ SN is transitive if every word w ∈ S∗

occurs in it.

We define analogously transitivity of a left infinite y ∈ S−N.



A right infinite x ∈ SN is transitive if every word w ∈ S∗

occurs in it.

We define analogously transitivity of a left infinite y ∈ S−N.

A configuration c ∈ SZ is doubly transitive if both tails

c[0,∞) and c(−∞,0] are transitive.

Every word appears infinitely often to the left and to the right



Let f be surjective. The following facts were proved in

[Hedlund 69]:

• There exists constant M = M(f) such that |f−1(c)| = M

for all doubly transitive c.

• For all configurations c we have |f−1(c)| ≥ M .



Assume neighborhood range m = 2.

For x ∈ SN we denote by f−1(x) the set of right-infinite
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For x ∈ SN we denote by f−1(x) the set of right-infinite

configurations that are mapped to x by the local rule:

Analogously, for left-infinite y ∈ S−N we define f−1(y):
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For any fixed transitive y ∈ S−N and x ∈ SN let us count the

pre-images of the configurations in

A = ySx.

All elements of A are doubly transitive and |A| = n so

|f−1(A)| = nM.

But f−1(A) consists of exactly the concatenations of f−1(y)

and f−1(x) so also

|f−1(A)| = |f−1(y)| · |f−1(x)|.



We have

|f−1(y)| · |f−1(x)| = nM.

Conclusion: all transitive x ∈ SN have the same number L of

pre-images, and all transitive y ∈ S−N have the same number

R of pre-images, and
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We have

|f−1(y)| · |f−1(x)| = nM.

Conclusion: all transitive x ∈ SN have the same number L of

pre-images, and all transitive y ∈ S−N have the same number

R of pre-images, and

LR = nM.

Observe that if n is prime then it divides L or R.
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doubly transitive then ci 6= ei for all i ∈ Z.
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x ∈ SN has more than n pre-images.

Then two of the pre-images start with the same symbol.



• If c, e are different configurations such that f(c) = f(e) is

doubly transitive then ci 6= ei for all i ∈ Z.

It follows that L ≤ n: Assume, in contrary, that transitive

x ∈ SN has more than n pre-images.

Concatenate on the left a left-infinite sequence whose image y

is transitive.



• If c, e are different configurations such that f(c) = f(e) is

doubly transitive then ci 6= ei for all i ∈ Z.

It follows that L ≤ n: Assume, in contrary, that transitive

x ∈ SN has more than n pre-images.

We get a contradiction with [Hedlund 69]: the two

configurations have the same doubly transitive image.
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We have

LR = nM,

L,R ≤ n

Conclusion: If n is a prime number then L = n or R = n.



Assume L = n. Let x ∈ SN be transitive.

For every s ∈ S the sequence sx is transitive, so it has n

pre-images, all beginning with a different symbol.



Assume L = n. Let x ∈ SN be transitive.

For every s ∈ S the sequence sx is transitive, so it has n

pre-images, all beginning with a different symbol.

Hence sx has pre-images beginning with all a ∈ S.

Conclusion: For all s, a ∈ S there exists b ∈ S such that

F (a, b) = s. The CA is right permutive.





What about when n = pq is composite ?



Construct two track CA with p and q symbols on the tracks,

respectively. Local rule

((a, b), (c, d)) 7→ (a, d)

translates the tracks in opposite directions. The CA is

reversible but not left or right permutive.





What about bigger neighborhood ranges m ?



All surjective elementary CA are permutive.



With two states n = 2 and range m = 4 we have a

non-permutive reversible CA:

Flip bit x in pattern 1x01



Also with n > 2 and m = 3 there exist non-permutive CA.



Hence the table is complete.



Two configurations x, y ∈ SZ are right-asymptotic if for

some k

x[k,∞) = y[k,∞)

CA f : SZ −→ SZ is left-closing if all distinct

right-asymptotic configurations have distinct images.



Two configurations x, y ∈ SZ are right-asymptotic if for

some k

x[k,∞) = y[k,∞)

CA f : SZ −→ SZ is left-closing if all distinct

right-asymptotic configurations have distinct images.

Right-closingness is defined analogously.

A CA is called closing if it is left or right closing.



Easy to see:

• All left permutive CA are left-closing, as are all reversible

CA.

• All left-closing CA are surjective.



A computer search shows that in case n = 2 and range m = 4

all surjective CA are closing.

With range m = 11 an example of a two state non-closing

surjective CA can be constructed.



Other examples complete the table. . .

. . . except that: two state automata with ranges 5 ≤ m ≤ 10

remain open.
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