Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

Color Blind Cellular Automata

Ville Salo Ilkka Törmä

TUCS – Turku Centre for Computer Science University of Turku, Finland

Automata 2013

► We consider cellular automata on full shifts S^Z, that is, infinite bidirectional sequences over a finite alphabet S. The elements of S are called symbols or colors.

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

・ロト・日本・日本・日本・日本・日本

- ► We consider cellular automata on full shifts S^Z, that is, infinite bidirectional sequences over a finite alphabet S. The elements of S are called symbols or colors.
- Cellular automata are functions f defined by a local rule f_{loc} : $f(x)_i = f_{\text{loc}}(x_{[i-r,i+r]})$ for some r.
- A permutation of S (a symbol permutation) can be extended to a cellular automaton on S^ℤ in the obvious way.

Color Blind Cellular Automata

- ► We consider cellular automata on full shifts S^Z, that is, infinite bidirectional sequences over a finite alphabet S. The elements of S are called symbols or colors.
- Cellular automata are functions f defined by a local rule f_{loc} : $f(x)_i = f_{\text{loc}}(x_{[i-r,i+r]})$ for some r.
- A permutation of S (a symbol permutation) can be extended to a cellular automaton on S^ℤ in the obvious way.
- ► A cellular automaton is *color blind* if it commutes with all symbol permutations on *S*.
- Color blind cellular automata are the ones that can be defined without referring to any individual colors.

Color Blind Cellular Automata

- ► We consider cellular automata on full shifts S^Z, that is, infinite bidirectional sequences over a finite alphabet S. The elements of S are called symbols or colors.
- Cellular automata are functions f defined by a local rule f_{loc} : $f(x)_i = f_{\text{loc}}(x_{[i-r,i+r]})$ for some r.
- A permutation of S (a symbol permutation) can be extended to a cellular automaton on S^ℤ in the obvious way.
- ► A cellular automaton is *color blind* if it commutes with all symbol permutations on *S*.
- Color blind cellular automata are the ones that can be defined without referring to any individual colors.
- Also: a cellular automaton is *captive* if its local rule always outputs one of the input colors.

Color Blind Cellular Automata

Example

The radius-1 cellular automaton f on $\{0, 1, 2\}^{\mathbb{Z}}$ defined by

$$f_{
m loc}(a,b,c) = \left\{ egin{array}{ll} c, & {
m if} \; a=b
eq c, \ a, & {
m if} \; a
eq b=c, \ b, & {
m otherwise} \end{array}
ight.$$

is clearly color blind. It always chooses the symbol in its neighborhood that is in the minority, or acts as the identity CA if such a symbol does not exist.

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

Elementary examples of color blind CA

Table: The even-numbered color blind elementary CA. The variables v_1 , v_2 and v_3 denote inputs to the local rule, and v_4 is its output.

CA	Color blind equation	Description
142	$(v_4 \neq v_2) \iff (v_1 = v_2 \neq v_3)$?
150	$(v_1 = v_2) \iff (v_4 = v_3)$	Sum of neighborhood
170	$v_4 = v_3$	Left shift
178	$(v_4 = v_2) \iff (v_1 = v_2 = v_3)$	Flip unless all equal
204	$v_4 = v_2$	Identity
212	$(v_4 \neq v_2) \iff (v_1 \neq v_2 = v_3)$	Mirrored 142
232	$(v_4 \neq v_2) \iff (v_1 \neq v_2 \neq v_3)$	Majority
240	$v_4 = v_1$	Right shift

Color Blind Cellular Automata

Color blindness vs. captivity

Lemma

Let $f : S^{\mathbb{Z}} \to S^{\mathbb{Z}}$ be a color blind CA. Then $f_{\text{loc}}(a_1, \ldots, a_n) \in \{a_1, \ldots, a_n\}$ whenever $|\{a_1, \ldots, a_n\}| < |S| - 1.$

Proof.

Suppose that we have $|\{a_1, \ldots, a_n\}| < |S| - 1$, but $a = f_{loc}(a_1, \ldots, a_n) \notin \{a_1, \ldots, a_n\}$. Then, there exists

$$b \in S \setminus \{a, a_1, \ldots, a_n\}.$$

Now, f does not commute with the transposition (a b).

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

・ロト・日本・日本・日本・日本・日本・日本

► Fix a set of variables V = {v₁,..., v_n}. A color blind equation over V is a boolean combination of basic equations of the form v_i = v_j.

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

・ロト ・ 国 ト ・ 王 ト ・ 王 ・ のへぐ

- ► Fix a set of variables V = {v₁,..., v_n}. A color blind equation over V is a boolean combination of basic equations of the form v_i = v_j.
- For a color blind equation E over V, and an alphabet S, we define E(S) ⊂ Sⁿ by

 $E(S) = \{w \in S^n \mid E(w) \text{ holds}\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Color Blind Cellular Automata

- ► Fix a set of variables V = {v₁,..., v_n}. A color blind equation over V is a boolean combination of basic equations of the form v_i = v_j.
- For a color blind equation E over V, and an alphabet S, we define E(S) ⊂ Sⁿ by

$$E(S) = \{w \in S^n \mid E(w) \text{ holds}\}.$$

- A set of words W ⊂ Sⁿ defines a function if for each w ∈ Sⁿ⁻¹, there is a unique extension wa ∈ W. The function maps w → a.
- ▶ We say *E* is *captive on S* if the last letter of *w* occurs at least twice in *w* for all $w \in E(S)$, and *captive*, if it is captive on *S* for all finite *S*.

- ► Fix a set of variables V = {v₁,..., v_n}. A color blind equation over V is a boolean combination of basic equations of the form v_i = v_j.
- For a color blind equation E over V, and an alphabet S, we define E(S) ⊂ Sⁿ by

$$E(S) = \{w \in S^n \mid E(w) \text{ holds}\}.$$

- A set of words W ⊂ Sⁿ defines a function if for each w ∈ Sⁿ⁻¹, there is a unique extension wa ∈ W. The function maps w → a.
- We say *E* is *captive on S* if the last letter of *w* occurs at least twice in *w* for all $w \in E(S)$, and *captive*, if it is captive on *S* for all finite *S*.
- If n = 2r + 2 and E(S) defines a function from S^{2r+1} to S, we let f^S_E : S^Z → S^Z be the cellular automaton whose local function it is. We say f^S_E is defined by a color blind equation.

Color Blind Cellular Automata

A characterization of color blind CA

<u>Ville Salo</u>, Ilkka Törmä

Lemma

A set of words $W \subset S^n$ is defined by a color blind equation if and only if it is closed under symbol permutations.

Corollary

A CA $f : S^{\mathbb{Z}} \to S^{\mathbb{Z}}$ is (captive and) color blind if and only if it is defined by a (captive and) color blind equation.

Side note: Color blind CA running on infinite alphabets

- Suppose E over variables {v₁,..., v_{2r+2}} is a captive color blind equation and defines a function from S^{2r+1} to S for all S
- in practise, this means E always equates v_{2r+2} with one of the v_i, and takes into account all possible partitions.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Color Blind Cellular Automata

Side note: Color blind CA running on infinite alphabets

- Suppose E over variables {v₁,..., v_{2r+2}} is a captive color blind equation and defines a function from S^{2r+1} to S for all S
- in practise, this means E always equates v_{2r+2} with one of the v_i, and takes into account all possible partitions.
- Then, the captive color blind CA f^S_E is defined for S = [0, n] for all n ∈ N.

Color Blind Cellular Automata

Side note: Color blind CA running on infinite alphabets

- Suppose E over variables {v₁,..., v_{2r+2}} is a captive color blind equation and defines a function from S^{2r+1} to S for all S
- in practise, this means E always equates v_{2r+2} with one of the v_i, and takes into account all possible partitions.
- Then, the captive color blind CA f^S_E is defined for S = [0, n] for all n ∈ N.
- Further, if $m \leq n$, then $f_E^{[0,n]}|_{[0,m]^\mathbb{Z}} = f_E^{[0,m]}$.
- We can take a 'limit' of this, obtaining a 'cellular automaton' f_E on N^ℤ!

Color Blind Cellular Automata

An intrinsically universal cellular automaton

 By a suitable coding, we can easily make a color blind cellular automaton simulate any other cellular automaton.

Theorem

For any alphabet S with $|S| \ge 2$, there exists an intrinsically universal captive color blind cellular automaton on $S^{\mathbb{Z}}$.

 Thus, color blind cellular automata can, in a sense, be as complicated as any general cellular automata. Color Blind Cellular Automata

On the number of color blind cellular automata

Definition

Let $\mathcal C$ be a family of cellular automata on $S^{\mathbb Z}.$ The density of $\mathcal C$ is defined as

$$d(\mathcal{C}) = \limsup_{n \to \infty} \frac{1}{n} \log_{|S|} \log_{|S|} |\mathcal{C}_n|, \qquad (1)$$

where C_n denotes the set of cellular automata in C that can be defined on the neighborhood $[-\lfloor n/2 \rfloor, \lceil n/2 \rceil]$.

Color blind cellular automata are abundant in the sense of the previous definition. Note that the set \mathcal{CA} of all cellular automata on $\mathcal{S}^{\mathbb{Z}}$ has density 1.

Proposition

Denote by CB the set of captive color blind cellular automata on $S^{\mathbb{Z}}$. Then d(CB) = 1.

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

うしん 同一人用 人用 人用 人口 マ

Typhlotic cellular automata

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

We have seen that color blindness, that is, commuting with symbol permutations, is not very restrictive.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Typhlotic cellular automata

- We have seen that color blindness, that is, commuting with symbol permutations, is not very restrictive.
- What about commuting with all symbol maps?
- If a cellular automaton f : S^ℤ → S^ℤ commutes with all symbol maps, we say it is *typhlotic*.

Characterization of typhlotic CA

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

► Interestingly, there are almost no typhlotic CA if |S| > 2, but there are many of them if |S| = 2.

Theorem

If $|S| \ge 3$, the typhlotic CA $f : S^{\mathbb{Z}} \to S^{\mathbb{Z}}$ are exactly the shift maps. If |S| = 2, they are exactly the captive color blind CA.

Proof idea in the case |S| = 2

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

► If |S| = 2, then the only symbol maps are the symbol permutations and the constant maps. Commuting with the first is equivalent to color blindness, and the latter is equivalent to captivity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof idea in the case $|S| \ge 3$

For any S, we can prove that there exists a set of subsets Q of the neighborhood of the cellular automaton such that f_{loc}(a₁,..., a_n) = b if and only if {i | a_i = b} ∈ Q.

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

Proof idea in the case $|S| \ge 3$

- For any S, we can prove that there exists a set of subsets Q of the neighborhood of the cellular automaton such that f_{loc}(a₁,..., a_n) = b if and only if {i | a_i = b} ∈ Q.
- Then, necessarily, Q satisfies the assumptions of the following lemma, and is thus an ultrafilter:

Lemma

Let X be a nonempty set, let $k \in \mathbb{N}$ with $k \ge 3$, and let $Q \subset 2^X$ have the property that for all partitions (A_1, \ldots, A_k) of X, exactly one A_i is in Q. Then Q is an ultrafilter. Furthermore, every ultrafilter satisfies the property for every $k \ge 1$. Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

・ロト ・ 通 ト ・ 画 ト ・ 画 ・ 今 の ぐ

Proof idea in the case $|S| \ge 3$

- For any S, we can prove that there exists a set of subsets Q of the neighborhood of the cellular automaton such that f_{loc}(a₁,..., a_n) = b if and only if {i | a_i = b} ∈ Q.
- Then, necessarily, Q satisfies the assumptions of the following lemma, and is thus an ultrafilter:

Lemma

Let X be a nonempty set, let $k \in \mathbb{N}$ with $k \ge 3$, and let $Q \subset 2^X$ have the property that for all partitions (A_1, \ldots, A_k) of X, exactly one A_i is in Q. Then Q is an ultrafilter. Furthermore, every ultrafilter satisfies the property for every $k \ge 1$.

But an ultrafilter on a finite set is of the form {A | i ∈ A} for some i, so f is a shift map! Color Blind Cellular Automata

Color blind group homomorphic cellular automata

- We have seen that color blindness, that is, commuting with symbol permutations, is not very restrictive.
- On the other hand, typhloticness has been shown to be restrictive for large alphabets, but non-restrictive for small ones.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Color Blind Cellular Automata

Color blind group homomorphic cellular automata

- We have seen that color blindness, that is, commuting with symbol permutations, is not very restrictive.
- On the other hand, typhloticness has been shown to be restrictive for large alphabets, but non-restrictive for small ones.
- We next consider cellular automata which are color blind, and group homomorphisms for some group G^ℤ.
- Similarly to the case of typhlotic cellular automata, it turns out that if |G| is small, then the automaton can be complicated, but if |G| is large, the cellular automaton is a shift map.

Color Blind Cellular Automata

Characterization

Color Blind Cellular Automata

<u>Ville Salo</u>, Ilkka Törmä

Theorem

Let G be a finite group, and let $f : G^{\mathbb{Z}} \to G^{\mathbb{Z}}$ be a homomorphic cellular automaton. Then, f is color blind iff one of the following (partially overlapping) conditions holds.

- $G = \mathbb{Z}_2$, $G = \mathbb{Z}_2^2$ or $G = \mathbb{Z}_3$, and f fixes unary points,
- G = Z₂ or G = Z₂², and f is a sum of an odd number of distinct shifts,
- $G = \mathbb{Z}_3$, and f is a sum of 3k + 1 shifts for some k,

•
$$|G| > 4$$
 or $G = \mathbb{Z}_4$, and f is a shift map.

Color Blind Cellular Automata

> <u>Ville Salo</u>, Ilkka Törmä

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → ヨ → のへぐ

Thank you for listening!