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Introduction

Generally, information dynamics is concerned with CA whose
states are in a finite (commutative) ring. However, we will
concentrate on polynomial rings in X over a finite field.

Let R be a finite ring (the states) and R% be the set of all
maps from Z to R (the configurations).

A one-dimensional three-neighbor cellular automaton (CA)
F : RZ s R% with values (states) in R is given by a map
f : R3 = R (the local rule) such that for a configuration
¢ € RZ one defines a new configuration F(c¢) by setting

F(c)(g) = flc(f—1),c(j),c(i+ 1))
for all j € Z. Iterating this global map F' leads to a sequence
of configurations ¢t = F'(c),t > 0.



Information dynamics

Consider the initial configuration QO defined as

a; if 9 <O
LPG)y=3 X ifj=0
bi if j >0,

where a; and b; are constants in R and X is considered
as a variable (information variable). Then for ¢ > 1 and
j € Z the value F'(¢)(j) either depends on X or not. E.qg.,
for values of j far to the left and right Ft(¢)(j) does not
depend on X.

The study of information dynamics is concerned with the

sets Mt = {Ft(c)(j) | j € Z} C R for t > 0. E.g. it ignores

the places (cells) where the information variable appears.
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Problem 1

The first problem considered by [N&S] is to ask if Mt con-
tains complete information about X or not, and if not, how
much information it contains.

A configuration ¢ is said to contain the information of X
completely and called a complete configuration, if X can
be obtained by finite sums and finite products of maps and
together with multiplication with constants (elements of
R). This situation can be restated in terms of ring gener-
ation. That is, let

P(t) = (M")

denote the smallest subring of R which is also an R-
module and contains M?.

Then ¢! is complete if and only if P(¢t) = R



Problem II

It was shown [N&S] that [(M?)| > [(MtTL)], ¢t > 0.
Note that it does not imply (M%) D (Mt ¢ > 0.

Another problem is the description of the lattice structure
of (M?). [vH] showed that the lattice is anti-isomorphic to
a certain partition lattice.

Now the research interest goes to elucidating the dynamical
properties of P(t) = (M?),t > 1. But unfortunately it seems
very difficult to generally solve the problem for arbitrary
CA.

In this talk we will confine ourselves to linear CA by use of
formal Laurent series and polynomials.



Linear CA with states in R

We assume that R is a commutative ring. An R-linear
scope k CA has a local rule f : R¥ — R of the form

k

flé1,... &) = D mi&5

=1
with r; € R for j =1,...,k.

A configuration c € RZ can be written as a formal Laurent
series c(Y) = Zjezg(j)Yj and a linear local rule f can be
written as a polynomial P(Y )with coefficients in R. Then
F'(c¢) is the Laurent series obtained by the multiplication of
c(Y) with P(Y), i.e.

F(c)(Y) = P(Y)c(Y) and F'(c)(Y) = P(Y)'e(Y)
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Residue class ring

With F we denote the finite field GF(q) with ¢ = p® ele-
ments where p is a prime and s is a positive integer.

The set of all maps from F to F is denoted as F[X] which
can be thought of as residue class ring F[X]/(X? — X ). In
other words, there is a one to one relation of maps from F
to IF and the polynomials of degree less than g with coef-
ficients in F.

The set F[X] becomes a ring with point wise addition and
multiplication, i.e.

(f +9)(&) = f(€) +g(&)

(fg)(&) = f(§)g(&)
for f, g € F[X] and € € F.



Linear CA with states in F[X]

Let R be the commutative ring F[X]. A linear cellular
automaton has a local rule given by a polynomial P(Y) in
F[X][Y], i.e.,

P(Y) =xF2gY? where g; € F[X], i=0,...,k — 1.

Here we are considering a special initial condition
~__ ] O ifg#0
c(j) = { 1 ifj=0

Note that O and 1 denote the constant maps O and 1, respectively.

In this setting, the set P(¢) is generated by the non-zero
coefficients of the polynomial P(Y)!. Note that the coef-
ficients of P(Y)! form a subset of F[X], and therefore the
old result is used to describe P(t).



A first result

The first result is based on

tl=¢and p§¢ =0 forall € F

and
k—1 | k—1 |
P(Y)" = () gY)?" = () glv)t
for all P(Y) € F[X][Y]. This leads to

Lemma (Lemma 4). P(t) = P(qt)



An old result on (M)

Let R be a finite field F and let M C F[X] Then the de-
scription of (M) is related to the support of M

supp(M) = {£ € F | there is g € M with g(¢) £ 0}
and separability properties of M. If &, ¢ € IF, then

M separates &, ¢, if there is g € M with g(&) # g(¢)

If £ and ¢ are not separable by M, then they are M-
equivalent.

Theorem. Let My, Mo be subsets of F[X]. Then (M;) =
(M) if and only if supp(M1) = supp(Mo) and the M-
equivalence classes and Moy-equivalence classes coincide.



On supp(P(t))

For £ € F we denote the ring homomorphism (evaluation
map) ¢¢ : F[X][Y] — F[Y] defined as

k—1 k—1 |
b¢ (Z giyz) =) gi(OY"
i=0 i=0
Theorem (Lemma 5).
supp(P(t)) = supp(P(1)) for all t > 1.

Proof: The result follows from

pc(P(Y)") = ¢e(P(Y))!
and the fact that £ € supp(M;) if and only if

pe(P(Y)") # 0.
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Divisibility Properties 1

Theorem (Theorem 1).

P(t) = P(1) for all t with gcd(t,q—1) = 1.

Proof: Apply the old result. By Lemma 5, P(t) and P(1)
have equal support. It remains to show that the equiva-
lence classes are the same. Note that & and ¢ are separated
by P(Y)! if and only if

¢e(P(Y))) # ¢ (P(Y)H).
If §&, ¢ are P(Y)-equivalent, then ¢:(P(Y)) = ¢:(P(Y))
and therefore ¢:(P(Y))! = ¢.(P(Y))!, i.e., they are P(Y)?
equivalent. On the other hand, i.e., £ and ¢ are P(Y)!-
equivalent, then the useful result implies that £ and ¢ are
P(Y )-equivalent.
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Divisibility Properties II

Theorem (Theorem 3). Let & and ¢ be P(Y )-separable and
let & be a divisor of g — 1. & and ¢ are P(Y)%-equivalent if
and only if there exists a p such that p° = 1 and ¢:(P(Y)) =

poc(P(Y)).

Proof: The proof relies on the useful result shown in the
next slide. Using some properties of the multiplicative
group (F\ {0},-) one obtains

Lemma (Lemma 6). Let t € N such that gcd(t,q —1) =9.
Then & and ¢ are P(Y)t-equivalent if and only if they are
P(Y)?-equivalent.
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A Useful Result

Theorem (Lemma 9, Theorem 5). Let P(Y), Q(Y) be
non-zero polynomials with coefficients in F[X] and let n € N
greater than 1. Then one has:

P(Y)" = Q(Y )™ if and only if there
exists p € F such that P(Y) = pQ(Y).

Consequences:

o pt =1.

e If gcd(n,gq—1) =1, then p=1
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General Results

Theorem (Lemma 7). The number D(q) of different P(t)
iIs bounded by the number of divisors of g — 1.

Thus we have the following upper bounds

q |2 345 7 89 11 13 16 17 19 23 25 27
D(@l|l1 223424 4 6 4 5 6 4 8 4

Lemma (Lemma 8). If P(Y) and Q(Y') have the same non-
zero coefficients in F[X], then P(t) = Q(t) for all t € N.

This follows from the above considerations. At no place

the order of the coefficients is important.
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Finally: Example (number 7)

Let F =77 = {0,1,...,6} with addition and multiplication
modulo 7. Let P(Y) = go+ 1Y + g2Y 2 + g3Y3, where the
maps g; : F — F are given as

F|0o1l12 3 456
dooll 2 6 5 4 1 2
g1!2 4 56 2 45
g3 6 40001
g3/4 1 3 2360

The columns correspond to the evaluation of polynomials

P (P(Y)).

(¢
D)
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Since supp(P(1)) = F, we have supp(P(t)) =F for all ¢.

Now one has

p1(P(Y)) = 2¢o(P(Y))
p2(P(Y)) = 6¢o(P(Y))
$4(P(Y)) = 5¢3(P(Y))
¢5(P(Y)) = 39¢3(P(Y))
¢5(P(Y)) = 2¢4(P(Y))

We thus obtain

factor order partition

1

6
2,4
3,5

1

2
3
6

10} U{1}U{2} U{3} U{4}U{5} U6}

10,2} U{1}U{3; U{4}U{5} U {6}
10,1} U{4,5} U{2; U{3} U {6}

{0,1,2} U {3,4,5} U {6}

P(t) = P(gcd(t,6)) for any t
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Lattice Structure

Comparing the lattices of the divisors of ¢ — 1 and of the
subrings one obtains the following picture

/6 /7’(1)\
3 2  P@®) P(2)
N

This figure suggests that the lattices are isomorphic.
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Future Work

1: Study the relation of the divisor lattice and the lattice
of subvectorspace-rings generated by a polynomial P(Y) €

F[X][Y].

2: Consider local rules which are "less linear”, e.qg.,

f(91,92,93) = A1(g91) + A2(g2) + A3(g3),

where \; : F[X] — F[X] are F-linear maps.

3: Analyse the information dynamics by taking the initial
condition ¢ = (...,u,x,v,...), where x is a variable with

values in F[X].
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hank you for your attention!
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