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1 Introduction

While a word is just a sequence of letters form an alphabet, a partial word or
a word with “don’t cares” is a word in which certain positions are unspecified.
Usually, these undefined positions are represented by a “hole” symbol ⋄. Partial
words were introduced [9] in the mid 1970s. During the last two decades a vast
amount on literature appeared on the combinatorics and algorithms on partial
words—we refer to [5] for further reading. In a recent attempt [8], partial words
were linked to regular languages. The motivation for this approach was to use
these partial words to compress the representation of ordinary word languages.
To this end, one has to specify the possible contents of the holes. For instance,
the finite four-element language L = {ab, bb, ac, bc} can be represented by the
two-element language L′ = {⋄b, ⋄c} on partial words, when replacing a hole ⋄
by either the letter a or b, resulting in the words ab, ac in the former case
and in the words bb, bc in the latter. Mathematically speaking, the replacement
of the holes can be modeled by a substitution σ : (Σ ∪ {⋄})∗ → 2Σ∗

satisfy-
ing σ(a) = a, for a ∈ Σ and σ(⋄) ⊆ Σ, which is called a ⋄-substitution. More
generally, this approach asks whether a language L can be compressed, i.e., if
there is a partial word language L′ smaller in size than L and a ⋄-substitution σ
such that L = σ(L′). For instance, if one uses the number of words in a finite
(partial) language L as a size measure, then the language L = {ab, ba} over the
alphabet {a, b} cannot be compressed at all, which is seen by an easy argument.
With this formulation the problem can be seen as a minimization problem. The
answer to this question obviously triggers algorithmical, descriptional complex-
ity theoretical, and computational complexity theoretical considerations, since
the answer is not always positive.

For the representation of the (partial) word languages it is convenient to
use deterministic finite automata (DFAs). In fact, besides [8], also [2] and [6]
stick to this representation. In the former two papers, descriptional and com-
putational complexity issues related to the compression based on partial words
are studied, while in the latter paper [6], an approximation algorithm for the
compression of finite languages is given. Moreover, there it is also mentioned,
that the minimization problem, that is, asking whether a language given by
a DFA that is associated to a ⋄-substitution σ can be compressed down to state
size k by using σ on a partial word DFA, for short ⋄-DFA, is computation-
ally intractable, namely NP-hard. This is deduced from a more general result
on minimization of finite automata due to [4] that shows that minimization is
NP-hard for all finite automata classes that subsume the class of unambiguous
finite automata, allow at most one state with a nondeterministic transition for at
most one alphabet symbol, and is restricted to visit this nondeterministic state
at most once in a computation. In [8], it was also shown that the equivalence
problem on partial word automata, that is, given a DFA A, a ⋄-DFA B, and
⋄-substitution σ, decide whether L(A) = σ(L(B)) holds, is coNP-hard. From
the computation complexity point of view these are the only results known for
partial word automata, up to our knowledge.

The aim of the present paper is to just about complete the picture on de-
cision problems related to partial word automata. In particular, we investigate
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the above mentioned compression or minimization problem and refine the pre-
vious intractability result to PSPACE-completeness. In fact, it turns out that
almost all problems related to partial word automata such as equivalence and
universality are PSPACE-complete, already for deterministic devices. A notable
exception is the emptiness problem for partial word automata, which turns
out to be NL-complete. Also the specific problem for DFAs on the essential
σ-definability introduced in [8] is PSPACE-complete. Here a language L ⊆ Σ∗

is essentially σ-definable for a ⋄-substitution σ, if there is a partial word lan-
guage L′ ⊆ (Σ ∪{⋄})∗, where every word in L′ has a hole, such that L = σ(L′).
All these results are in sharp contrast to results on ordinary DFAs, because
most problems for DFAs are efficiently solvable. When restricting all these prob-
lems to devices that accept finite languages a drop to the lower levels of the
polynomial hierarchy appears. To be more precise, the emptiness problem for
partial word automata accepting finite languages remains NL-complete as in
the general case. For the other considered problems, it turns out that there
is a subtle difference, whether the ⋄-substitution is part of the input or not.
The equivalence problem for partial word automata accepting finite languages
is coNP-complete in case the ⋄-substitution is part of the input. If the existence
of a ⋄-substitution that makes the two input automata equivalent is asked for,
the problem is contained in ΣP

2 and remains coNP-hard. While for partial word
automata problems in the general case, there is no difference in complexity if
the ⋄-substitution is part of the input or is existentially asked for, here we are
only able to prove an non-matching upper and lower bound. A similar situ-
ation appears for partial word automata accepting finite languages in case of
the compressibility or minimization problem and for the question of being es-
sentially σ-definable. These non-matching upper and lower bounds on some of
the problems on partial word automata problem for finite languages is some-
how related to the minimization problem on ordinary nondeterministic finite
automata: here the exact complexity status is not completely revealed since it
is NP-hard [1] and contained in ΣP

2 , because the equivalence problem for NFAs
accepting finite languages is coNP-complete [15].

The paper is organized as follows. In the upcoming section we give basic
definitions used throughout the paper. Section 3 studies basic language prob-
lems such as emptiness, universality, and equivalence for partial word automata,
and in Section 4 we consider the problem of deciding whether a language is es-
sentially σ-definable. Then Section 5 is devoted to the study of minimization
problems for partial word automata. Finally, in Section 6 we reconsider all
above mentioned problems for the special case, where all automata accept fi-
nite languages. Due to space constraints almost all proofs can be found in the
Appendix.

2 Preliminaries

Let Σ be an alphabet. A word w over alphabet Σ is a possibly empty sequence
w = a1a2 . . . an of elements ai ∈ Σ, for 1 ≤ i ≤ n, called letters. The length
of a word w is denoted by |w| and is equal to the number of letters of w;
the empty word denoted by λ has length 0. The concatenation of two words v
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and w is denoted by v · w and is equal to vw. The set Σ∗ is the set of all
words over Σ. It is a monoid with concatenation and identity element λ. A
language L over Σ is a subset of Σ∗. The concatenation operation on words
naturally extends to languages; more precisely, if L and M are languages over Σ,
then L ·M is defined to be { vw | v ∈ L and w ∈ M }. The language L is regular
if L = L(A) for some deterministic or nondeterministic finite automaton A. A
nondeterministic finite automaton (NFA) is a quintuple A = (Q, Σ, δ, q0, F ),
where Q is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q
is the initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → 2Q

is the transition function. The language accepted by the finite automaton A is
defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }, where the transition function
is recursively extended to δ : Q×Σ∗ → 2Q. A finite automaton is deterministic
(DFA) if and only if |δ(q, a)| = 1, for all states q ∈ Q and letters a ∈ Σ. Then we
simply write δ(q, a) = p instead of δ(q, a) = {p}, assuming that the transition
function δ : Q × Σ → Q is a total mapping.

Let ⋄ be a new symbol with ⋄ 6∈ Σ, which is called the hole symbol or
hole, for short. Set Σ⋄ := Σ ∪ {⋄}. A word w over Σ⋄ is said to be a partial
word. All the above introduced notations naturally carry over to partial words.
In particular, a set L ⊆ Σ∗

⋄ is a partial word language, and it is regular if
and only if it is accepted by a DFA or NFA A with input alphabet Σ⋄ that
is, L = L(A). Thus, we treat the hole symbol ⋄ as an ordinary input letter.
In order to distinguish between finite automata accepting ordinary languages
from those accepting partial word languages, we refer to the latter one as ⋄-
DFA or ⋄-NFA, respectively. Partial word languages can be transformed to
ordinary languages by using ⋄-substitutions over Σ. A ⋄-substitution over Σ
is a mapping σ : Σ∗

⋄ → 2Σ∗

satisfying (i) σ(a) = {a}, for every a ∈ Σ, (ii)
σ(⋄) ⊆ Σ, and (iii) σ(vw) = σ(v) · σ(w), for every v, w ∈ Σ∗

⋄ . Thus, σ is fully
defined by σ(⋄). Applying σ to a partial word language L ⊆ Σ∗

⋄ results in an
ordinary language on words σ(L) ⊆ Σ∗. Sometimes we call the partial word
language L the “compressed” version of σ(L).

We classify problems on partial word automata w.r.t. their computational
complexity. Consider the inclusion chain NL ⊆ P ⊆ NP ⊆ ΣP

2 ⊆ PSPACE.
Here NL refers to the set of problems accepted by nondeterministic logspace
bounded Turing machines, P (NP, respectively) is the set of problems accepted
by deterministic (nondeterministic, respectively) polynomial time bounded Tur-
ing machines, and PSPACE is the set of problems accepted by deterministic or
nondeterministic polynomial space bounded Turing machines. Moreover, ΣP

2

refers to the second level of the polynomial hierarchy, that is the set of prob-
lems accepted by polynomial time bounded alternating Turing machines, that
start in an existential configuration and are allowed to alternate at most once.
Further, for a complexity class C, the set coC is the set of complements of lan-
guages from C. Hardness and completeness is always meant w.r.t. deterministic
logspace bounded reducibility.

Finally, let us recall what is known from a computational complexity per-
spective for problems on ordinary finite automata. Basic decision problems con-
cerning the language accepted by automata are the emptiness, universality, and
equivalence problems. Concerning the complexity of these decision problems for

4



finite automata, the following is known. The emptiness problem for finite au-
tomata is NL-complete, no matter whether DFAs or NFAs are considered [12].
For the other problems the situation is different. The universality problem and
the equivalence problem are NL-complete for DFAs [7], and PSPACE-complete
for NFAs [14]. For the decision version of the minimization problem for finite
automata it is known that the DFA-to-DFA minimization is NL-complete [7],
while the problem becomes PSPACE-complete [11] if at least one of the involved
automata is allowed to be nondeterministic. For finite automata accepting finite
languages, the situation is slightly different and more complex. In some cases
a drop in complexity to compared to the general case is known. The emptiness
problem for finite automata accepting finite languages remains NL-complete
as in the general case, regardless whether DFAs or NFAs are considered. The
bounded-universality problem is coNP-complete for NFAs [15], while it is NL-
complete for DFAs [7]. Here bounded-universality asks whether the device under
consideration accepts Σ≤ℓ, for some given ℓ. Finally, the DFA-to-DFA minimiza-
tion problem for automata accepting finite languages remains NL-complete [7]
as in the general case. If NFAs accepting finite languages are considered, it is
known that the minimization problem is contained in ΣP

2 , and is NP-hard [1].
Recently the lower bound was improved to DP-hardness, even if the input is a
DFA [10]. The complexity class DP includes both NP and coNP.

Most of the hardness results in our paper are obtained by reductions from
the union universality problem for DFAs, which is to decide for given DFAs
A1, A2, . . . , An with common input alphabet Σ, whether

⋃n
i=1 L(Ai) = Σ∗

holds. This problem is known to be PSPACE-complete, even if Σ is a binary
alphabet [11, 13].

3 Basic Language Problems

We study the complexity of corresponding problems for partial word automata.
We use the following notation. Let X be the class of ⋄-DFAs or the class of
⋄-NFAs. The emptiness problem X -eq-∅ is to decide for a given partial word
automaton A ∈ X and a given ⋄-substitution σ, whether σ(L(A)) = ∅. Here
the ⋄-substitution σ is given as input. However, one could also consider the
following “existential”-variant of this problem: the problem X -eq-∅(∃σ) is to
decide for a given partial word automaton A ∈ X , whether there exists some
⋄-substitution σ such that σ(L(A)) = ∅. Similarly, the problem X -eq-∅(∀σ) asks
whether L(A) = ∅ holds for all “appropriate” ⋄-substitutions σ. Here it has
to be specified, what an appropriate ⋄-substitution should be. If A is a par-
tial word automaton with input alphabet Σ⋄, then the ⋄-substitution σ satis-
fies σ(⋄) ⊆ Σ. But still the question is, whether the empty ⋄-substitution σ
with σ(⋄) = ∅ is appropriate or not. If not stated otherwise, we only consider
non-empty ⋄-substitutions in this case. Although at a first glance this seems to
be a negligibility, it turns out that this issue may induce a significant differ-
ence in the complexity of the corresponding decision problems. Analogously to
emptiness problems, we define the universality problems X -eq-Σ∗, X -eq-Σ∗

(∃σ),
and X -eq-Σ∗

(∀σ). Moreover, for automata classes X and Y, which can be the
classes of DFAs, NFAs, ⋄-DFAs, or ⋄-NFAs, we define the equivalence problems
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X -eq-Y, X -eq-Y(∃σ), and X -eq-Y(∀σ). Here a ⋄-substitution σ of course only ap-
plies to particular word automata. For example the problem ⋄-DFA-eq-DFA(∃σ)

is to decide for a given ⋄-DFA A and a given DFA B, whether there exists a
⋄-substitution σ such hat σ(L(A)) = L(B).

We first show that the different variants of the emptiness problem are NL-
complete.

Theorem 1 (Emptiness). For X ∈ {⋄-DFA, ⋄-NFA} the emptiness problems
X -eq-∅, X -eq-∅(∃σ), and X -eq-∅(∀σ) are NL-complete.

Proof. First notice that if A is a ⋄-NFA with input alphabet Σ⋄ and σ is a
⋄-substitution with σ(⋄) 6= ∅ then clearly the language σ(L(A)) is empty if
and only if the partial word language L(A) is empty. If σ(⋄) = ∅ then the lan-
guage σ(L(A)) is empty if and only if σ(L(A))∩Σ∗ is empty. Since the emptiness
problem for NFAs is NL-complete, it follows that the emptiness problems for
partial word automata can be solved in NL. For NL-hardness we use the fact
that the emptiness problem for DFAs is NL-complete [12], even if the given
DFA accepts a finite language. Since any DFA can be seen as an incomplete
⋄-DFA, NL-hardness of the three problems from the theorem easily follows by
a simple reduction: given a DFA B, we construct a ⋄-DFA A by introducing
a new non-accepting sink state, and ⋄-transitions to this state from all other
states. Clearly σ(L(A)) is empty if and only if L(B) is empty, no matter which
⋄-substitution σ is chosen. This also proves the lower bound for the correspond-
ing ⋄-NFA problems. ⊓⊔

Next we study universality and equivalence problems for partial word au-
tomata. It turns out that all of these problems are PSPACE-complete, except for
two degenerate variants, where the empty substitution is taken into account.
Our main results on the universality problems will be summarized in Theo-
rem 4, and results on equivalence problems will be summarized in Theorem 5.
Before we come to these results, we prove two lemmas which provide upper and
lower bounds for the complexities of the universality and equivalence problems.
We start with PSPACE upper bounds for the equivalence problems.

Lemma 2. The equivalence problems ⋄-NFA-eq-⋄-NFA, ⋄-NFA-eq-⋄-NFA(∃σ),
and ⋄-NFA-eq-⋄-NFA(∀σ) can be solved in PSPACE.

Proof. The given automata A and B can easily be transformed into NFAs A′

and B′, with L(A′) = σ(L(A)) and L(B′) = σ(L(B)), by replacing all ⋄-
transitions with transitions on symbols from σ(⋄). Hence the first problem from
the lemma can be reduced to deciding equivalence of two NFAs, which can be
solved in PSPACE. Moreover, the other two problems can be solved in PSPACE

by iterating over all ⋄-substitutions σ with σ(⋄) ⊆ Σ, where Σ is the set of
input symbols different from ⋄ that appear in A or B. ⊓⊔

Next we provide PSPACE lower bounds for universality problems.

Lemma 3. The problems ⋄-DFA-eq-Σ∗, ⋄-DFA-eq-Σ∗
(∃σ), and ⋄-DFA-eq-Σ∗

(∀σ)

are PSPACE-hard.
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Fig. 1. The ⋄-DFA A constructed from the DFAs A1, A2, . . . , An over the common input
alphabet {a, b}. For all numbers i, with 1 ≤ i ≤ n, the state si is connected to the initial
state of the DFA Ai by a path of length 2 · (n + 1 − i) that consists of alternating a- and
b-transitions. All states on these paths are accepting states. Transitions on a and b which are
not shown lead to the accepting sink state qacc, and ⋄-transitions which are not shown lead
to the rejecting sink state qrej .

Proof. Let us begin with the third problem of the lemma. We prove PSPACE-
hardness by a reduction from the union universality problem for DFAs, which
is well known to be PSPACE-complete, even if restricted to DFAs over a binary
input alphabet. Therefore, let A1, A2, . . . , An be DFAs with common input al-
phabet Σ = {a, b}. We construct a ⋄-DFA A as shown in Figure 1. Clearly this
construction can be carried out by a logarithmic space bounded Turing machine.
In the following we prove that A satisfies σ(L(A)) = Σ∗ for all ⋄-substitutions σ
with ∅ 6= σ(⋄) ⊆ Σ if and only if

⋃n
i=1 L(Ai) = Σ∗.

First assume that
⋃n

i=1 L(Ai) 6= Σ∗, and choose w ∈ Σ∗ such that for all i
with 1 ≤ i ≤ n, we have w /∈ L(Ai). Then, for all appropriate ⋄-substitutions σ,
the word (ab)n+1w does not belong to the language σ(L(A)). To see this, it is
sufficient to consider the ⋄-substitution σΣ , with σΣ(⋄) = {a, b}. By replacing
in A all ⋄-transitions by transitions on a and b we obtain an NFA B for the
language σΣ(L(A)). Now assume that B accepts the word (ab)n+1w. After read-
ing the prefix (ab)n+1 the automaton B can only reach the initial states of the
DFAs Ai, for 1 ≤ i ≤ n, and the non-accepting sink state qrej . Of course qrej

does not lead to an accepting state on any input, so the suffix w can only be
accepted from some initial state of a DFA Ai, with 1 ≤ i ≤ n. But this means
that w ∈ L(Ai), which is a contradiction. Thus, we have w /∈ σΣ(L(A)), i.e.,
σ(L(A)) = Σ∗ does not hold for all appropriate ⋄-substitutions σ—in fact, we
have shown that this equality does not hold for any ⋄-substitution.
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For the reverse implication assume that
⋃n

i=1 L(Ai) = Σ∗. Further let σ be
a ⋄-substitution with ∅ 6= σ(⋄) ⊆ Σ. Notice that we have a ∈ σ(⋄) or b ∈ σ(⋄)
because σ(⋄) is not empty. We have to show that σ(L(A)) = Σ∗. Therefore let B
be the NFA for σ(L(A)) constructed from A by replacing the ⋄-transitions by
transitions on all symbols from σ(⋄), and let w ∈ Σ∗.

First assume that w can be written as w = (ab)n+1v for some word v ∈ Σ∗.
We have v ∈ L(Ai) for some integer i with 1 ≤ i ≤ n because

⋃n
i=1 L(Ai) = Σ∗.

Then w can be accepted by B as follows. Reading the prefix (ab)i−1 takes B
to state pi. From there, by reading ab, the state si can be reached either by
passing through state qi, if b ∈ σ(⋄), or by passing through state ri, if a ∈ Σ(⋄).
From state si the initial state of the DFA Ai is reached after reading (ab)n+1−i,
and the suffix v is accepted from there because v ∈ L(Ai). Hence the word
w = (ab)n+1v belongs to σ(L(A)).

Finally assume that w does not have the prefix (ab)n+1. Then either the
length of w is at most 2n + 1, or its prefix of length 2n + 2 does not obey
the ab-structure. In the latter case the automaton B reaches the accepting sink
state qacc—recall that all transitions on symbols a and b which are not shown
in Figure 1 lead to qacc. In the remaining case, where the length of w is at
most 2n+1, the word is also accepted by B because either w leads to qacc (due
to violating the ab-structure) or w leads to some state “between” p1 and the
initial state of An. Therefore σ(L(A)) = Σ∗, which concludes the proof that
the third problem of the lemma is PSPACE-hard.

In fact, we have also shown PSPACE-hardness for the second problem from
the lemma because we have seen that if

⋃n
i=1 L(Ai) 6= Σ∗, then no σ-substitution

satisfies σ(L(A)) = Σ∗. To obtain a reduction that also proves the first prob-
lem of the lemma to be PSPACE-hard, we simply give the ⋄-substitution σ
with σ(⋄) = {a, b} as additional input. ⊓⊔

Now we are ready to state our main results of this section. We start with
the universality problems.

Theorem 4 (Universality). For X ∈ {⋄-DFA, ⋄-NFA} the universality prob-
lems X -eq-Σ∗, X -eq-Σ∗

(∃σ), and X -eq-Σ∗
(∀σ) are PSPACE-complete.

Proof. Lemma 3 provides the lower bounds of PSPACE-hardness. Containment
of the problems in PSPACE can be deduced from Lemma 2, by choosing the ⋄-
NFA B in the problem descriptions of that lemma to be the single-state ⋄-DFA
accepting the language Σ∗

⋄ . ⊓⊔

Our results on the different equivalence problems are as follows.

Theorem 5 (Equivalence). The equivalence problems X -eq-Y, X -eq-Y(∃σ),
and X -eq-Y(∀σ), for X ∈ {⋄-DFA, ⋄-NFA} and Y ∈ {⋄-DFA, ⋄-NFA,DFA,NFA},
are PSPACE-complete.

Proof. For proving PSPACE-hardness, we reduce the universality problems from
Lemma 3 to the equivalence problems of the present theorem by choosing the
automaton B as the single-state DFA (or ⋄-DFA) for the language Σ∗ (or Σ∗

⋄ ,
respectively). Containment in PSPACE follows from Lemma 2. ⊓⊔
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Finally we show that the “for all”-variants of the universality and equiva-
lence problems for ⋄-DFAs become much easier if also the empty ⋄-substitution σ
with σ(⋄) = ∅ is considered:

Theorem 6. The problem of deciding for a given ⋄-DFA A, and a DFA B
with input alphabet Σ, whether for all ⋄-substitutions σ, with σ(⋄) ⊆ Σ, we
have σ(L(A)) = L(B), is NL-complete.

Proof. By choosing B to be the single-state DFA for the empty language, the
lower bound of NL-hardness follows from Theorem 1.

It remains to prove containment in NL. Let A be a ⋄-DFA and B be a DFA
with input alphabet Σ. We have to decide whether σ(L(A)) = L(B) holds for all
⋄-substitutions σ with σ(⋄) ⊆ Σ. In order to decide this question, we only need
to consider the two ⋄-substitutions σ∅ : ⋄ 7→ ∅ and σΣ : ⋄ 7→ Σ. Our algorithm
works as follows. First we decide whether σ∅(L(A)) = L(B). If this is not true,
then obviously the answer to the equivalence problem at hand is “no.” Otherwise
we check σΣ(L(A)) ⊆ L(B). Again, if this is not true, then we can safely answer
“no.” Now assume we have σ∅(L(A)) = L(B) and σΣ(L(A)) ⊆ L(B). In this
case the answer is “yes,” which can be seen as follows. We know that for all
⋄-substitutions σ with σ(⋄) ⊆ Σ we have

L(B) = σ∅(L(A)) ⊆ σ(L(A)) ⊆ σΣ(L(A)) ⊆ L(B),

hence σ(L(A)) = L(B)—here we use the fact that for all ⋄-substitutions σ1

and σ2, with σ1(⋄) ⊆ σ2(⋄), and all languages L we have σ1(L) ⊆ σ2(L).
The fact that the described algorithm can be implemented in NL can be seen

as follows. The test whether σ∅(L(A)) = L(B) boils down to testing equivalence
of the two DFAs B and A∅, where A∅ is obtained from A by ignoring the
⋄-transitions, and equivalence of DFAs can be decided in NL. Moreover also
σΣ(L(A)) ⊆ L(B) can be decided in NL by checking σΣ(L(A)) ∩ L(B) 6= ∅—
here L(B) is the set Σ∗ \L(B): we can transform A into an NFA for σΣ(L(A))
by re-labeling the ⋄-transitions with the letters from Σ, and we transform the
DFA B into a DFA for the language L(B). From these automata an NFA for the
language σΣ(L(A))∩L(B) can be constructed by a logarithmic space bounded
Turing machine. So deciding σΣ(L(A)) ⊆ L(B) can be reduced to deciding
(non-)emptiness of an NFA language, which can be solved in NL [12]. ⊓⊔

Because testing universality can be reduced to testing equivalence to a DFA
for Σ∗, Theorem 6 readily implies the following result.

Theorem 7. The problem of deciding for a given ⋄-DFA A and an alphabet Σ,
whether for all ⋄-substitutions σ, with σ(⋄) ⊆ Σ, we have σ(L(A)) = Σ∗, is NL-
complete.

Proof. Containment in NL follows from Theorem 6, and NL-hardness from the
fact that the universality problem for DFAs is NL-complete. ⊓⊔
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4 Definability Problems

In [8] the authors introduce a property of languages called essentially σ-definable.
They give the following definition.

Definition 8. Let L ⊆ Σ∗ be a language and σ be a ⋄-substitution over Σ. We
say that L is σ-defined by the language L′, where L′ ⊆ (Σ ∪ {⋄})∗ is a partial
word language, if L = σ(L′). Moreover, we say that L is essentially σ-defined
by L′, where L′ ⊆ (Σ ∪ {⋄})∗, if L = σ(L′) and every word in L′ contains at
least one ⋄-symbol.

One of the main questions is, given a language L and a ⋄-substitution σ,
whether L essentially σ-definable. For example, the language L = {aa, bb} is
not essentially σ-definable no matter how the substitution is chosen. It is not
possible to choose a single symbol for the substitution, because both words of L
consist either of a’s or of b’s. Substitutions with more than the two symbols a
and b are meaningless and if the substitution is {a, b} it leads to the words
ab, ba /∈ L depending at which position the hole is set.

Here we study the following decision problems. The problem DFA-σ-def is
to decide for a given DFA A and a ⋄-substitution σ, whether language L(A)
is essentially σ-definable. The problems DFA-σ-def(∃σ), and DFA-σ-def(∀σ) ask
whether L(A) is essentially σ-definable for some ⋄-substitution σ, or, respec-
tively, for all ⋄-substitutions σ, with σ(⋄) 6= ∅.

In [8] it is shown that, given a regular language L and a ⋄-substitution σ,
it is decidable whether L is essentially σ-definable. In particular, it is shown
that the language L(A) accepted by a DFA A = (Q, Σ, q0, F, δ) is essentially
σ-definable if and only if L(A) =

⋃
q∈Q Rq, where

Rq = {x ∈ Σ∗ | δ(q0, x) = q } · Σ′ · { y ∈ Σ∗ | δ(q′, y) ∈ F, for all q′ ∈ δ(q, Σ) }

with Σ′ = σ(⋄). Testing equivalence of a regular language and the union of reg-
ular languages can be very hard. The question is whether this effort is required.

Theorem 9. The problem DFA-σ-def is PSPACE-hard.

Proof. The main idea of the proof is that we give a reduction from the union
universality problem for DFAs. Let the DFAs A1, A2, . . . , An over input alpha-
bet Σ form an instance of that problem. For 1 ≤ i ≤ n we denote the ith DFA
by Ai = (Qi, Σ, δi, qi,0, Fi). We construct a DFA A = (Q, Σ ∪ {a, b}, δ, q0, F ),
where a, b /∈ Σ are new input symbols, that uses the DFAs A1, A2, . . . , An.
For 1 ≤ i ≤ n, automaton A accepts words from L(Ai) that are preceded by
the word bi−1abn−i, and it accepts all words from Σ∗ preceded by bn. So A is
defined as shown in Figure 2.

Given this automaton A and the ⋄-substitution σ : ⋄ 7→ {a, b}, the problem
is, whether L(A) essentially σ-definable. It is clear that if there exists an au-
tomaton A⋄ with L(A) = σ(L(A⋄)), then the holes in words from L(A⋄) are
at the first n positions, because after n symbols only symbols over Σ lead to
accepting states.
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q1 q2 . . . qn p

A1

A2

An

b b b b

Σ

a a a

bn−1
bn−2

Fig. 2. The DFA A for the instance of the σ-definability problem constructed from the
DFAs A1, A2, . . . , An. All undefined transitions lead to a non-accepting sink state, which is
not shown.

If
⋃n

i=1 L(Ai) = Σ∗ we can define the automaton A′
⋄ where each word

w ∈ L(A′
⋄) has a hole and L(A) = σ(L(A′

⋄)). Automaton A′
⋄ consists of the

automata A1, A2, . . . , An. Each word from language L(Ai) is preceded by the
word bi−1⋄bn−i. The automaton A′

⋄ can be obtained from the automaton A
from Figure 2 by removing state p and associated transitions, and by changing
the a-transitions in states pi, for 1 ≤ i ≤ n, to ⋄-transitions.

Let us first check whether each word w of L(A) is in σ(L(A′
⋄)). If w is of

the form bi−1abn−iv, with v ∈ L(Ai), then the word bi−1⋄bn−iv is in L(A′
⋄).

If the hole is substituted by an a then we obtain the word w. For the words
bnv ∈ L(A), with v ∈ Σ∗ it has to hold that every v is accepted by at least
one of the automata A1, A2, . . . , An. Assume it is accepted by automaton Ai

then there is the word bi−1⋄bn−iv in L(A′
⋄) and the hole can be replaced by b.

Now we check whether each word of σ(L(A′
⋄)) is in L(A). If we take some word

w = bi−1⋄bn−iv ∈ L(A′
⋄), with v ∈ L(Ai), and replace the hole by b then it

is the word bnv that is accepted by A by first using the path bn and then for
processing v in state p. If we replace the hole by an a, we get the word bi−1abn−iv
that is accepted by A by first using the path bi−1abn−i and by processing v with
the automaton Ai.

It follows that if
⋃n

i=1 L(Ai) = Σ∗ then L(A) is essentially σ-definable.
It remains to show that if

⋃n
i=1 L(Ai) 6= Σ∗ then L(A) is not essentially σ-

definable. Consider a word v ∈ Σ∗ with v /∈ L(Ai), for 1 ≤ i ≤ n. Then it
holds that bi−1abn−iv /∈ L(A), for all 1 ≤ i ≤ n, but the word bnv is in L(A).
Assuming L(A) is essentially σ-definable then there has to be a word w with
at least one hole so that bnv ∈ σ(w). The hole has to be placed at the first n
positions because the substitution is over {a, b}. Consider there is a hole at
position i then substituting the hole to a, the word w′ = bi−1abn−iv is also in the
language σ(L(A′

⋄)). But w′ is not in L(A), so it follows that if
⋃n

i=1 L(Ai) 6= Σ∗

then L(A) is not essentially σ-definable. ⊓⊔

For the “for all”- and the “existential”-variants we find the following hard-
ness result.

Theorem 10. The problems DFA-σ-def(∃σ) and DFA-σ-def(∀σ) are PSPACE-
hard.
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Proof. First we consider the DFA-σ-def(∃σ) problem. In this proof the con-
struction of the former proof is used. Let the DFAs A1, A2, . . . , An over the
input alphabet Σ form an instance of the universality problem. Now we use
a homomorphism h with h(c) = cc, for all c ∈ Σ, and obtain the languages
h(L(A1)), h(L(A2)), . . . , h(L(An)) that are accepted by DFAs A′

1, A
′
2, . . . , A

′
n.

Obviously
⋃n

i=1 L(Ai) = Σ∗ if and only if
⋃n

i=1 L(A′
i) = h(Σ)∗. Let A0 be a

DFA that accepts the regular language L(A0) = (Σ2)∗ \h(Σ)∗, i.e., it is the set
of all words of even length from Σ∗ that cannot be obtained by the homomor-
phism h. This language can be described by

L(A) = h(Σ)∗ · { cc′ | c, c′ ∈ Σ, c 6= c′ } · h(Σ)∗.

We construct the DFA A′′ that uses the DFAs A′
1, A

′
2, . . . , A

′
n similar as in the

last proof. A′′ accepts words of Ai that are preceded by bi−1abn−i and words
from h(Σ)∗ that are preceded by bn.

Then we construct a new automaton A′, depicted in Figure 3, so that

L(A′) = { bw | w ∈ h(L(A)) } ∪ { aaw, abw | w ∈ L(A0) },

where L(A) is the language accepted by the DFA A from the proof of Theorem 9.

q0 q1 q2 . . . qn p

A0

A′

1

A′

2

A′

n

b b b b b

h(Σ)

a a a a

a, b
bn−1

bn−2

Fig. 3. The DFA A′ for the language { bw | w ∈ h(L(A)) } ∪ { aaw, abw | w ∈ L(A0) },
where L(A) is the language accepted by the DFA A from the proof of Theorem 9, and A0

accepts the language (Σ2)∗ \ h(Σ)∗.

We show that there exists a ⋄-substitution σ for which L(A′) is essentially
σ-definable if and only if

⋃n
i=1 L(A′

i) = h(Σ)∗. In particular, in the following
we show that the only possible ⋄-substitution is the substitution ⋄ 7→ {a, b}.

The ⋄-substitution can not be chosen to be a single symbol in Σ ∪ {a, b},
because for every letter there exists a word in L(A′) that does not contain
this letter. Clearly the ⋄-substitution can not be chosen by a mixture of {a, b}
and Σ, because it is required that if a word starts with an a the next symbol
has to be an a or a b and then there is a suffix over Σ. If the word starts with
symbol b then the next n symbols are from {a, b} and the suffix is over Σ.

The only remaining possibilities for σ(⋄) are to choose {a, b} or some subset
of the form {c1, c2, . . . , cℓ} of Σ, with ℓ ≥ 2. Assume we use the ⋄-substitution
that maps ⋄ to {c1, c2, . . . , cℓ}. Because bn+1c1c1 ∈ L(A′), the corresponding
partial word language must contain the word bn+1c1⋄ or the word bn+1⋄c1. In
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both cases, substitution ⋄ by the letter c2 results in a word that does not belong
to L(A′).

The only possibility is to choose the ⋄-substitution σ : ⋄ 7→ {a, b}. Here it
turns out that L(A′) is essentially ⋄-definable if and only

⋃n
i=1 L(A′

i) = h(Σ)∗.
First notice that if L(A′) is essentially σ-defined by the partial word lan-
guage L⋄, then there is no word ⋄zw ∈ L⋄ with z ∈ {a, b}∗, and w ∈ (Σ2)∗:
there are two possibilities for the length of z, namely either |z| = 1 or |z| = n.
First, if |z| = 1 then a word bzw with z ∈ {a, b} and w ∈ (Σ2)∗ has to be
in L(A′), but this is not the case. If |z| = n then the word azw, with z ∈ {a, b}n

and w ∈ (Σ2)∗, has to be in the language L(A′), which is also not the case.
So the hole symbol can only appear on positions 2, . . . , n + 1. Hence, the only
possibility to obtain words from a·{a, b}·L(A0) is to put the ⋄ at the second po-
sition. This means that L⋄ = a⋄ ·L(A0)∪L′

⋄, for some appropriate language L′
⋄,

with σ(L′
⋄) = b · h(L(A)), where L(A) is the language accepted by the DFA A

from the proof of Theorem 9. By a similar argumentation as in that proof we
can see that such a language L′

⋄ (where every word has a hole) exists if and
only

⋃n
i=1 L(A′

i) = h(Σ)∗.

Next we consider the DFA-σ-def(∀σ) problem. We reuse the construction
from the proof of Theorem 9, but we assume the input DFAs A1, A2, . . . , An

to have a binary input alphabet Σ = {c, d}—with this restriction, the union
universality problem stays PSPACE-complete. We start with the automaton
A = (Q, Σ ∪ {a, b}, δ, q1, F ) pictured in Figure 2 with input alphabet {a, b, c, d},
which is constructed from the DFAs A1, A2, . . . , An. Let us denote the elements
of 2Σ \{∅, {a, b}} by m1, m2, . . . , m14. Now we modify automaton A to obtain a
new DFA A′ = (Q′, Σ, δ′, s1, F ) as follows. We add the states s1, s1, . . . , s14. For
1 ≤ i ≤ 13 we add transitions from si to si+1 on all symbols from mi. Further
we add transitions from s14 to the initial state q1 of the DFA A on all symbols
from m14.

Now we claim that L(A′) is essentially σ-definable for each possible ⋄-substi-
tution σ over Σ if and only if

⋃n
i=1 L(Ai) = {c, d}∗. The main idea is that for

every set mi 6= {a, b} there is an edge in the front of the automaton A′. So for
every ⋄-substitution σ : ⋄ 7→ mi, with 1 ≤ i ≤ 14, language L(A′) is essentially
σ-definable: an appropriate partial word automaton A′

⋄ can be obtained by re-
placing the corresponding transitions from si to si+1 by a ⋄-transition. Concern-
ing the remaining ⋄-substitution σ : ⋄ 7→ {a, b}, we have seen in the proof of The-
orem 9, that L(A) is essentially σ-definable if and only if

⋃n
i=1 L(Ai) = {c, d}∗.

This means that if this union is equal to {c, d}∗, then also the language L(A′)
is essentially σ-definable for the substitution ⋄ 7→ {a, b}, and hence, for all ap-
propriate ⋄-substitutions σ. It remains to show that this is the only way for
fulfilling this property.

Let
⋃n

i=1 6= {c, d}∗, and assume to the contrary that there exists some au-
tomaton A′

⋄ so that L(A′) = σ(L(A′
⋄)), for the ⋄-substitution σ : ⋄ 7→ {a, b}. As-

sume there is a word u⋄v ∈ L(A′
⋄), with |u| ≤ 13, i.e., where the hole is set at the

position i, with 1 ≤ i ≤ 14. If {a, b} * mi then σ(u⋄v) contains a word that does
not belong to L(A′). So the only possibility is to set a hole at a position j where
{a, b} ⊆ mj . There are three such positions 1 ≤ j0 < j1 < j2 ≤ 14, which w.l.o.g.
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correspond to the following subsets of Σ: mj0 = {a, b, c}, mj1 = {a, b, d} and
mj2 = {a, b, c, d}. However, by using ⋄ symbols on these positions we still cannot
obtain all words from L(A′) because words of the form z0cz1dz2cz3w

′ ∈ L(A′),
with |z0| = j0−1, |z1| = j1−1, |z2| = j2−1, and w′ ∈ L(A), cannot be obtained
by applying the ⋄-substitution σ : ⋄ 7→ {a, b}. Such words can only be obtained
if ⋄ appears only after position 14, i.e., in a position corresponding to the suf-
fix w′ ∈ L(A′). Now a similar argumentation as in the proof of Theorem 9 shows
that there is a word in L(A′) that cannot be obtained by the ⋄-substitution σ.
Hence L(A′) is not essentially σ-definable for the ⋄-substitution σ : ⋄ 7→ {a, b}.

⊓⊔

It can be easily seen that each language over the unary alphabet {a} is
essentially σ-definable if the substitution is {a}. For a fixed alphabet |Σ| > 1
the decision whether a regular language is essentially σ-definable is in PSPACE.

Theorem 11 (Essential σ-Definability). Let Σ be some fixed alphabet with
|Σ| ≥ 4. The problems DFA-σ-def, DFA-σ-def(∃σ), and DFA-σ-def(∀σ), when
restricted to DFAs with input alphabet Σ, are PSPACE-complete.

Proof. Theorems 9 and 10 provide the PSPACE lower bounds. It remains to
prove containment of the problems in PSPACE. We start with the DFA-σ-def
problem. Given a DFA A = (Q, Σ, δ, q0, F ) and a ⋄-substitution σ : ⋄ 7→ Σ′,
with Σ′ = {a1, a2, . . . , aℓ}, the test can be done by using the sets

Rq = {x ∈ Σ∗ | δ(q0, x) = q } · Σ′ · { y ∈ Σ∗ | δ(q′, y) ∈ F for all q′ ∈ δ(q, Σ) }

and test whether L(A) =
⋃

q∈Q Rq.
For every q ∈ Q, an NFA A′

q = (Q′, Σ, δ′, q0, F
′) that accepts Rq can be

constructed by using states Q′ = Q∪Qℓ, final states F ′ = F ℓ, and the transition
function δ′ which is defined as follows. If q′, q′′ ∈ Q, and a ∈ Σ, such that
δ(q′, a) = q′′, then q′′ ∈ δ′(q′, a). Moreover, for symbols a ∈ Σ′, state q also
satisfies (q1, q2, . . . , qℓ) ∈ δ′(q, a), where qi = δ(q, ai), for 1 ≤ i ≤ ℓ. Finally, the
transitions in states (q1, q2, . . . , qℓ) ∈ Qℓ are such that for all a ∈ Σ we have
δ′((q1, q2, . . . , qℓ), a) = {(δ(q1, a1), δ(q2, a2), . . . , δ(qℓ, aℓ)}.

If |Q| = n then A′
q has O(nℓ) many states. There are n different sets Rq, so

an NFA A′ accepting
⋃

q∈Q Rq with O(nℓ+1) many states can be constructed
by a polynomial space bounded Turing machine. Now deciding whether L(A)
is essentially σ-definable boils down to testing equivalence of A and A′, which
can be done in PSPACE.

The problems DFA-σ-def(∃σ) and DFA-σ-def(∀σ) can be solved in PSPACE

by iterating the above algorithm for all possible ⋄-substitutions over Σ. ⊓⊔

5 Minimization Problems

We now study minimization problems for partial word automata. Since we
already know that the universality problem for such automata is PSPACE-
complete, we can deduce that both the ⋄-DFA-to-DFA and the ⋄-DFA-to-⋄-DFA
minimization problems are PSPACE-hard. However, we can also show that the
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minimization problem for ⋄-DFAs is PSPACE-complete, even when starting from
a DFA. Besides the problem variants where the ⋄-substitution is given in the in-
put, we also consider the corresponding “existential”-variants of the problems.
At the end of this section we also discuss possible “for all”-variants.

We use a similar notation for our problems as in Section 3. For automata
classes X and Y we consider the X -to-Y and X -to-Y(∃σ) minimization problems.
For example, the minimization problem NFA-to-⋄-DFA(∃σ) is to decide for a
given NFA A and an integer n, which is given in unary notation, whether there
exist an n-state ⋄-DFA B and a ⋄-substitution σ, such that L(A) = σ(L(B)).

Let us begin with the PSPACE lower bound for the DFA-to-⋄-DFA and
DFA-to-⋄-DFA(∃σ) minimization problems.

Theorem 12. The DFA-to-⋄-DFA and DFA-to-⋄-DFA(∃σ) minimization prob-
lems are PSPACE-hard.

Proof. We give a reduction from the union universality problem for DFAs. Let
the DFAs A1, A2, . . . , An over a common input alphabet Σ form an instance of
that problem. For 1 ≤ i ≤ n we denote the ith DFA by Ai = (Qi, Σ, δi, qi,1, Fi),
with state set Qi = {qi,1, qi,2, . . . , qi,ti}. We may assume that all states in these
automata are reachable, so that for all integers i and j, with 1 ≤ i ≤ n and
1 ≤ j ≤ ti, we can fix some word wi,j ∈ Σ∗ such that δi(qi,1, wi,j) = qi,j .

Instead of directly describing the DFA for the instance of the minimiza-
tion problem, we describe an equivalent NFA A, from which the DFA for the
problem instance can easily be constructed. We construct the nondeterministic
automaton A = (Q, Σ′, δ, p0, {qf}) shown in Figure 4. The input alphabet of A′

is

Σ′ = Σ ∪ { bi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ti } ∪ {c, e,#, $}

∪ { di | 1 ≤ i ≤ n + 1 } ∪ { d′i | 1 ≤ i ≤ n + 2 }.

The transitions of the input DFAs A1, A2, . . . , An on alphabet symbols a ∈ Σ
are preserved in A, and the additional transitions of A can be read from Figure 4
and its caption. The only final state in A is the state qf , in particular the
final states of the input DFAs are non-final in A. The number of states in A
is k = n + 8 +

∑n+1
i=2 i +

∑n
i=1 ti. Further notice that for the ⋄-substitution

σ : ⋄ 7→ {#} the NFA A can be transformed into a (k + 1)-state ⋄-DFA A⋄

such that σ(L(A⋄)) = L(A) as follows: for each state pi, with 1 ≤ i ≤ n + 1 we
re-label one of its two outgoing #-transitions by ⋄, and we add a non-accepting
sink state, which is chosen as the target of all undefined transitions.

Now let us see why a DFA for L(A) can easily be constructed. Let A′ be
the power-set automaton of A. One can see from Figure 4 that only singleton
sets or the empty set can be reached in A′ when reading a word that starts
with a di symbol. The only possibility to reach a state in the automaton A′,
that consists of more than one state of A, is to read a word starting with #.
However, all words that start with # and eventually lead to an accepting state
of A′ have to be of the form #n+2w for some suffix w that does not contain
a # symbol. The prefix #n+2 takes A′ to state {s1, s2, . . . , sn+2}. From there,
reading a d′i symbol leads to the singleton {qf}, while reading $ leads to state
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p0 p1 p2 . . . pn pn+1

s′1 s′2
. . . s′n sn+1 sn+2

s1

s2

sn

q1,1

q2,1

qn,1

r qc

q1,j

q2,j

qn,j

r′

qf

d1 d2 dn dn+1

d′1

d′2

d′n

d′n+1 d′n+2

di

d′i

# # # # #

# # # #

#

#n

#n−1

#

$

$

$

$ $

Σ

Σ

Σ

w1,j

w2,j

wn,j

b1,j , [c]

b2,j , [c]

bn,j , [c]

bi,j , e

c

Fig. 4. The NFA A constructed from the DFAs A1, A2, . . . , An. The dashed arrows denote
the following transitions: for 1 ≤ i ≤ n + 1, the initial state p0 goes to state si on reading di;
moreover, for 1 ≤ i ≤ n + 2, state si goes to state qf on reading d′

i. The states s′i and si, for
1 ≤ i ≤ n, are connected by a path of length n + 1 − i consisting of #-transitions—this path
contains n + 2 − i states including s′i and si. The dashed boxes represent the input DFAs.
The bracketed [c] on the transitions from states qi,j has the following meaning, for all i and j

with 1 ≤ i ≤ n and 1 ≤ j ≤ ti: if qi,j ∈ Fi then there is a c-transition from qi,j to qf , otherwise
no c-transition is defined in qi,j . Further, every state qi,j goes to state qf on input bi,j , and the
special state r′ has transitions on bi,j to state qf for all i and j, with 1 ≤ i ≤ n and 1 ≤ j ≤ ti.

{q1,1, q2,1, . . . qn,1, r, qc}. From this set we can either read c or some bi,1 symbol
to reach the singleton {qf}, or read some input symbol a ∈ Σ, which leads to a
set of the form R ∪ {r′, qc}, where R contains only states from the input DFAs
A1, A2, . . . , An. From this state, reading arbitrary words over the alphabet Σ
always leads to states that contain the elements r′ and qc, as well as some states
of the input DFAs. Reading c or a bi,j symbol always leads to state {qf}, and
all other symbols lead to the empty set. Hence all reachable states of the form
R ∪ {r′, qc} are pairwise equivalent—notice that all of them are non-accepting.
This shows that the minimal DFA A′′ for the language L(A), which serves as
the automaton for the instance of the DFA-to-⋄-DFA(∃σ) and DFA-to-⋄-DFA
the minimization problems, can be constructed from A in polynomial time.
The integer for the instance of the minimization problem is k = |Q|, i.e., the
number of states of the NFA A, and the ⋄-substitution for the instance of the
DFA-to-⋄-DFA problem is the substitution σ : ⋄ 7→ {#}.
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It remains to prove the correctness of the reduction. We first show that if⋃n
i=1 L(Ai) = Σ∗ then there is a k-state ⋄-DFA B such that σ(L(B)) = L(A),

where σ is the substitution mapping ⋄ to {#}. For the converse we show that⋃n
i=1 L(Ai) 6= Σ∗ implies that there is no ⋄-DFA B and no ⋄-substitution σ

that satisfy σ(L(B)) = L(A).
Assume that

⋃n
i=1 L(Ai) = Σ∗ holds. We first construct a (k − 1)-state

NFA B′ by deleting state qc together with the associated transitions. This NFA
satisfies L(B′) = L(A) which can be seen as follows. Clearly, all words accepted
by B′ are also accepted by A. Assume that there is some word w ∈ L(A) that
is not accepted by B′. Then all accepting computations of A on w must lead
through the deleted state qc. Then the word w can be written as w = #n+2$w′c,
for w′ ∈ Σ∗. Since

⋃n
i=1 L(Ai) = Σ∗ we have w′ ∈ L(Ai) for some i with

1 ≤ i ≤ n. Now we can see that w = #n+2$w′c is also accepted by B′ because
after reading #n+1$, the automaton B can reach state qi,1, i.e., the initial state
of DFA Ai. On reading w′ from state qi,1 a state qi,j ∈ Fi is reached, and from
this state a transition on input c leads to the accepting state qf . This shows that
it must be L(B′) = L(A). Now we can transform B′ into a k-state ⋄-DFA B
by re-labeling for each state pi, with 1 ≤ i ≤ n + 1, one of its two outgoing
#-transitions by ⋄, and by introducing a non-accepting sink state as the target
of all undefined transitions. By choosing the ⋄-substitution σ with σ(⋄) = {#},
this ⋄-DFA B satisfies σ(L(B)) = L(A).

It remains to prove that
⋃n

i=1 L(Ai) 6= Σ∗ implies that there is no ⋄-substi-
tution σ and no k-state ⋄-DFA B such that σ(L(B)) = L(A). Because L(A) is
non-empty and prefix-free, every such ⋄-DFA B must have a non-accepting sink
state. Moreover, when given a k-state ⋄-DFA B and a ⋄-substitution σ such that
σ(L(B)) = L(A) then we can construct a (k − 1)-state NFA B′ by replacing
the ⋄-transitions with transitions on the symbols from σ(⋄), and deleting the
non-accepting sink state. Therefore, in order prove the above statement, it is
sufficient to show that every NFA for the language L(A) needs at least k states,
because then every ⋄-DFA B needs at least k + 1 states. Here we use a fooling
set technique, see [3]. Let w ∈ Σ∗ with w /∈

⋃n
i=1 L(Ai), and choose some

symbol a ∈ Σ. Then the following set S is fooling set for L(A):

S = { (dn+1$, ae), (dn+1$a, e), (dn+1$ae, λ), (#n+2$, wc) }

∪ { (#i, #n+2−id′n+2) | 0 ≤ i ≤ n + 2 }

∪ { (di#
j , #n+1−i−jd′i) | 1 ≤ i ≤ n + 1, 0 ≤ j ≤ n + 1 − i }

∪ { (di#
n+1−i$wi,j , bi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ti }

Notice that |S| = n + 7 +
∑n+1

i=1 (n + 2 − i) +
∑n

i=1 ti = k, and that for ev-
ery element (u, v) ∈ S we have uv ∈ L(A). It remains to verify that for
all (u, v), (u′, v′) ∈ S, with (u, v) 6= (u′, v′), at least one of the words uv′

and u′v does not belong to L(A). Most cases are not hard to check, and
therefore are discussed in the Appendix. Here we only deal with the case
where (u, v) = (#n+2$, wc) and (u′, v′) = (di#

n+1−i$wi,j , bi,j), for 1 ≤ i ≤ n
and 1 ≤ j ≤ ti. Assume that uv′ = #n+2$bi,j ∈ L(A)—otherwise we are done.
Because the prefix #n+2$ leads to the states {q1,1, q2,1, . . . , qn,1, r, qc}, and no
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bi,j-transitions are defined in the states r and c, we may conclude that j = 1, i.e.,
that bi,j = bi,1 belongs the initial qi,1 state of the DFA Ai. Now we can see that
the word u′v is not accepted by A: reading the prefix u′ = di#

n+1−i$wi,1 leads
to state qi,1. From there the word w leads to some state qi,j′ of Ai, with qi,j′ /∈ Fi,
because we know that w /∈ L(Ai). Hence no c-transition is defined in that state,
so the word u′v = di#

n+1−i$wi,1wc does not belong to L(A). This concludes
our proof. ⊓⊔

With small modifications, the proof of Theorem 12 also shows PSPACE-
hardness of the corresponding minimization problems, where the input automa-
ton is a ⋄-DFA, ⋄-NFA, or a classical NFA, and the target automaton may as
well be an NFA, or ⋄-NFA. Moreover, the fact that the universality problem
for partial word automata is PSPACE-complete implies PSPACE-hardness of
the minimization problems where the input is a partial word automaton, and
the target automaton is a DFA. Altogether, we know that the minimization
problems X -to-Y and X -to-Y(∃σ) are PSPACE-hard if the input, or the target
automaton is a partial word automaton.

Our main result of this section reads as follows.

Theorem 13 (Minimization). The X -to-Y, and X -to-Y(∃σ) minimization
problems are PSPACE-complete, if X ,Y ∈ {⋄-DFA, ⋄-NFA,DFA,NFA}, with
{X ,Y} ∩ {⋄-DFA, ⋄-NFA} 6= ∅.

Proof. It remains to prove containment in PSPACE, since PSPACE-hardness is
already shown in Theorem 12. When given an instance of one of the prob-
lems, a nondeterministic polynomial space bounded Turing machine may guess
a k-state automaton B of the appropriate type, and if necessary, also a ⋄-
substitution σ, and write these on its working tape—because the integer k
is given in unary notation, we have enough space. Then the machine sim-
ply has to verify equivalence (w.r.t. the ⋄-substitution) of the input automa-
ton and automaton B, which can be done in PSPACE by Theorem 5. Since
NPSPACE = PSPACE, this proves containment of our minimization problems
in PSPACE. ⊓⊔

In the remainder of this section we consider two different “for all”-variants
of the minimization problem for partial word automata. The input to both
problems is an automaton A and an integer k. The question for the first prob-
lem is, whether for all appropriate ⋄-substitutions σ there exists some k-state
automaton B that is equivalent to A (w.r.t. σ). In the second question the order
of the quantifiers is reversed: decide, whether there exists some k-state automa-
ton B that is equivalent to A (w.r.t. σ), for all appropriate ⋄-substitutions σ.
The following theorem shows PSPACE-completeness for the problems where the
input and target automata are partial word automata.

Theorem 14. Given a ⋄-DFA A with input alphabet Σ⋄, and an integer k, the
following problems are PSPACE-complete.

1. Does for all ⋄-substitutions σ over Σ, with σ(⋄) 6= ∅, exist a k-state ⋄-DFA B,
such that σ(L(A)) = σ(L(B))?
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2. Does there exist a k-state ⋄-DFA B, such that for all ⋄-substitutions σ
over Σ with σ(⋄) 6= ∅, we have σ(L(A)) = σ(L(B))?

This statement remains true, if ⋄-NFAs are used instead of ⋄-DFAs.

Proof. For PSPACE-hardness we give use nearly the same reduction as in the
proof for Theorem 4. There, the ⋄-DFA A, with input alphabet Σ⋄ = {a, b, ⋄},
depicted in Figure 1 is constructed from the DFAs A1, A2, . . . , An, which form
an instance of the union universality problem. We use this automaton A and
the integer k = 1 as input to our minimization problems. We have seen in the
proof of Theorem 4 that all non-empty ⋄-substitutions σ over Σ = {a, b} satisfy
σ(L(A)) = Σ∗ if and only if

⋃n
i=1 L(Ai) = Σ∗. Hence, if

⋃n
i=1 L(Ai) = Σ∗ then

the single-state ⋄-DFA B for the language Σ∗
⋄ satisfies σ(L(A)) = σ(L(B)) for

all appropriate ⋄-substitutions σ. On the other hand, if there is a word w ∈ Σ∗

with w /∈
⋃n

i=1 L(Ai) then we have seen that the word (ab)n+1w does not belong
to σ(L(A)), no matter which σ is chosen. However, one can see from Figure 1
that the words a and ab always belong to the language σ(L(A)). Hence no single-
state NFA B′ can accept the language σ(L(A)), and therefore no single-state
⋄-DFA B can satisfy σ(L(A)) = σ(L(B)), no matter which ⋄-substitution σ is
chosen.

It remains to prove containment in PSPACE. Let A and k be given. To solve
the first question, we consider each non-empty ⋄-substitution σ over Σ, one
after another, and each time use the PSPACE algorithm for the ⋄-DFA-to-⋄-
DFA minimization problem from Theorem 13 to decide whether an appropriate
k-state ⋄-DFA B with σ(L(A)) = Σ(L(B)) exists. To solve the second question,
we guess a k-state ⋄-DFA B and use the PSPACE algorithm from Theorem 5
for the ⋄-DFA-eq-⋄-DFA(∀σ) problem to decide whether σ(L(A)) = Σ(L(B))
holds.

One can check that the reduction for the lower bound, and the algorithm
for the upper bound also applies to ⋄-NFAs instead of ⋄-DFAs. ⊓⊔

A similar PSPACE-completeness result as in Theorem 14 can also be ob-
tained if the input or the target automaton is a classical NFA instead of a
partial word automaton: for proving PSPACE-hardness, the automaton A from
Figure 1 can be transformed into an NFA A′ by replacing the ⋄-transitions
by transitions on symbol a, and the PSPACE upper bound can be shown by
a similar algorithm as in the proof of Theorem 14. The PSPACE upper bound
of course also holds, if the input automaton is a DFA. However the proof of
PSPACE-hardness (or the proof of an upper bound below PSPACE) for the cor-
responding minimization problems is left for further research.

6 Problems on Finite Languages

In this section we consider the complexity of partial word automata problems
restricted to finite languages. Compared to our previous investigations here
the complexity of most of these problems drops significantly from PSPACE-
completeness down to coNP-completeness or -hardness and containment in ΣP

2 ,
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depending on the problem under consideration. This complexity drop nicely fits
to the known results on ordinary finite automata accepting finite languages.

We start with the emptiness problem for partial word automata accepting
finite languages. Here the situation remains the same as in the general case. The
proof is identical to the proof of Theorem 1. For X ∈ {DFA, NFA, ⋄-DFA, ⋄-NFA}
let Xfin refer to the class of automata that accept only finite languages.

Theorem 15 (Emptiness). For X ∈ {⋄-DFAfin, ⋄-NFAfin} the emptiness prob-
lems X -eq-∅, X -eq-∅(∃σ), and X -eq-∅(∀σ) are NL-complete. ⊓⊔

Now let us come to the equivalent of the universality problem, the bounded-
universality problem, which asks for equivalence to the language Σ≤ℓ. As the
reader may have noticed, most hardness proofs in the previous sections rely on
the union universality problem for DFAs. For finite languages we first show that
the union universality problem adapted to finite languages is coNP-complete.
Thus, we define the union bounded-universality problem as follows: given finite
automata A1, A2, . . . An with input alphabet Σ and an integer ℓ coded in unary,
decide whether

⋃n
i=1 L(Ai) = Σ≤ℓ, where Σ≤ℓ is a short-hand notation for the

set {w ∈ Σ∗ | |w| ≤ ℓ }. For this problem we have the following result:

Theorem 16. The union bounded-universality problem for NFAs and DFAs is
coNP-complete, even for automata with a binary input alphabet.

Proof. Let A1, A2, . . . , An be the finite automata with input alphabet Σ and ℓ
the bound for the bounded-universality problem. The coNP upper bound on the
union bounded-universality problem is easily seen as follows. First construct
an NFA B such that L(B) =

⋃n
i=1 L(Ai)—this can be done in polynomial

time. Then by the standard intersection construction for NFAs we build an
NFA C with L(C) = L(B) ∩ Σ≤ℓ. Finally, one checks equivalence of L(C)
with Σ≤ℓ, which can be done by an oracle for equivalence for finite languages.
Since at least one automaton involved is an NFA, this problem is known to be
coNP-complete [15]. Thus, the union bounded-universality problem is contained
within coNP.

For the hardness, we alter the construction of [15] on the NP-complete in-
equivalence problem for regular expressions over a binary alphabet with the op-
erations union and concatenation. There, it is shown how to construct a regular
expression r over the alphabet Σ and an integer ℓ for a polynomial time bounded
Turing machine M on input x such that x ∈ L(M) if and only if L(r) 6= Σ≤ℓ.
Let p(n) be the running time of M . In fact, the regular expression encodes the
invalid computations of the Turing machine M on input x. The set of valid com-
putations of M on x consists of words of the form #ID1#ID2# . . .#IDp(n)#,
where ID1 is the initial configuration of M on x, IDp(n) the accepting con-
figuration, and IDj+1 is a successor of IDj , for 1 ≤ j < p(n) − 1. Note that
there is no need that any configuration is longer than p(n). To construct the
regular expression one has to describe the words that fail to be a valid com-
putation. There are several cases that itself split into several subcases: (i) the
word “starts wrong,” (ii) it “ends wrong,” (iii) it is ”not conform” with the
movement of the Turing machine, or (iv) is ”not of the right shape,” or (iv) is
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“to short.” All these words can be described by polynomial size DFAs instead
of regular expressions—for more details on the construction we refer to [15].
The tedious details in the construction of these finite automata is left to the
interested reader. Let A1, A2, . . . An be these automata with input alphabet Σ
and ℓ = (p(n) + 1) · p(n) + 1. Then x ∈ L(M) if and only if

⋃n
i=1 L(Ai) 6= Σ≤ℓ.

Thus, we have reduced coNP to the union bounded-universality problem for
DFAs. This proves the stated result. ⊓⊔

Now we are ready to study bounded-universality and equivalence problems
for partial word automata accepting finite languages.

Theorem 17 (Bounded-Universality). For X ∈ {⋄-DFAfin, ⋄-NFAfin} the
universality problems X -eq-Σ≤ℓ and X -eq-Σ≤ℓ

(∀σ) are coNP-complete, and the

problem X -eq-Σ≤ℓ
(∃σ) is coNP-hard and contained in ΣP

2 .

Proof. For the coNP-hardness we utilize the proof of Theorem 3. The presented
reduction has to be slightly modified. First, instead of the union universality
problem for DFAs we use the union bounded-universality problem for DFAs.
Let n be the number of DFAs and ℓ the length bound for the union bounded-
universality problem. Then in the construction of a ⋄-DFA, as depicted in Fig-
ure 1, the accepting state qacc has to be replaced by a chain of 2n + 2 + ℓ
accepting states that have to be appropriately connected in a level like fashion
to the other states in the construction. The remaining proof runs along similar
lines and shows coNP-hardness for the mentioned problem instances.

Next, containment of X -eq-Σ≤ℓ, for X ∈ {⋄-DFAfin , ⋄-NFAfin}, within coNP

is seen as follows: let an automaton A⋄ and a σ-substitution σ be given. Then
one constructs an NFA A from A⋄ by replacing all ⋄-transitions by transitions
carrying all letters from σ(⋄). Thus, L(A) = σ(L(A⋄)). This can be done in de-
terministic polynomial time. Then it remains to check equivalence between L(A)
and Σ≤ℓ, which can be done in coNP, because the involved automata accept
finite languages only. Thus, the overall algorithm can be implemented on a poly-
nomial time bounded Turing machine, which works in universal mode. Therefore
the problem under consideration belongs to coNP.

For X -eq-Σ≤ℓ
(∀σ) and X -eq-Σ≤ℓ

(∃σ), with X ∈ {⋄-DFAfin , ⋄-NFAfin}, the
⋄-substitution is not part of the input. Thus, in the former problem, one can
universally guess it, while in the latter problem one can existentially guess the
⋄-substitution σ, and apply the just explained coNP algorithm to the automaton
and the universally or existentially guessed σ. Thus, in the former problem the
upper bound becomes coNP, while in the latter problem a ΣP

2 upper bound
emerges. ⊓⊔

Our results on the different equivalence problems are as follows:

Theorem 18 (Equivalence). For X ∈ {⋄-DFAfin, ⋄-NFAfin} and for each
Y ∈ {⋄-DFAfin, ⋄-NFAfin,DFAfin,NFAfin}, the equivalence problems X -eq-Y and
X -eq-Y(∀σ) are coNP-complete, and the problem X -eq-Y(∃σ) is coNP-hard and
contained in Σp

2 .

21



Proof. For proving coNP-hardness, we reduce the bounded-universality prob-
lems from Theorem 17 to the equivalence problems of the present theorem by
choosing the automaton B as the automaton accepting Σ≤ℓ (or Σ≤ℓ

⋄ , respec-
tively). Containment in coNP and ΣP

2 , depending on the problem variant one
is interested in, follows with similar arguments as in the proof Theorem 17. ⊓⊔

Next, we consider the computational complexity of the essential σ-definability
problem for finite languages, when represented as a DFA.

Theorem 19 (Essential σ-Definability). Let Σ be some fixed alphabet with
|Σ| ≥ 4. The problems DFAfin-σ-def, and DFAfin-σ-def(∀σ), for DFAs with input
alphabet Σ, are coNP-complete, and the problem DFAfin-σ-def(∃σ), for DFAs

with input alphabet Σ, is coNP-hard and contained in ΣP
2 .

Proof. For the coNP lower bound we slightly modify the constructions in the
proofs to Theorems 9, 10, and 10. Instead of the union universality problem
for DFAs we us its counterpart for finite languages, namely the union bounded-
universality problem for DFAs (over a binary input alphabet). Then in the
constructions of the DFAs, as depicted in the Figures 2 and 3 the accepting
state p has to be replaced appropriately. Let ℓ be the length of the bounded-
universality problem. In the former construction the state q is replaced by a
chain of ℓ+1 accepting states. In this way the set Σ≤ℓ is accepted, when starting
from the replaced state q. In the latter construction, the state q is replaced by a
subautomaton with ℓ·(|Σ|+1)+1 states that accepts the set (h(Σ))≤ℓ. Moreover,
the automaton A0 has to be replaced too. Instead of accepting the infinite
language (Σ2)∗\h(Σ)∗ it now must accept the finite language (Σ2)≤ℓ\(h(Σ))≤ℓ.
This automaton is of size at most ℓ · (|Σ| + 1) + 2ℓ + 1. Then one can easily
see that the whole argumentation presented in these proofs also applies to the
bounded-universality case.

For the upper bound we argue as in the proof of Theorem 11. There it is
shown that for the DFA-σ-def problem with given DFA A boils down to test
equivalence between A and a series of n NFAs of polynomial size that can be
effectively constructed in deterministic polynomial time. Since both A and the n
involved NFAs accept finite languages only, this task can be done in coNP. A
similar argumentation applies to the corresponding “for all”-variant, since one
can first universally guess a σ-substitution and then apply the just described
algorithm for the DFA-σ-def problem in parallel. Thus, also DFAfin -σ-def(∀σ)

belongs to coNP. Finally, the upper bound raises to ΣP
2 for the DFAfin -σ-def(∃σ)

problem, since the guessing of the σ-substitution has to be done existentially.
⊓⊔

Finally, we investigate the minimization problem, when finite languages are
involved.

Theorem 20 (Minimization). The problems X -to-Y and X -to-Y(∃σ) are hard

for coNP and contained in ΣP
2 , if {X ,Y} ∩ {⋄-DFAfin, ⋄-NFAfin} 6= ∅, and

X ,Y ∈ {⋄-DFAfin, ⋄-NFAfin,DFAfin,NFAfin}
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Proof. Again, we reuse some of the proofs from the general case. We alter
the construction presented in the proof of Theorem 12 to show coNP-hardness
for the minimization problems DFAfin -to-⋄-DFAfin and DFAfin -to-⋄-DFAfin (∃σ).
Our reduction starts from the union bounded-universality problem for DFAs.
Let ℓ be the length bound for the bounded-universality problem. We construct
an automaton according to the description given in the proof of Theorem 12.
The state r′ has to be replaced by a chain of ℓ non-accepting states, while state
and qc is replaced by ℓ+1 non-accepting states—cf. Figure 4. All these states in
the chain have to be appropriately connected. Then the argumentation is given
in the proof of Theorem 12 applies in the same way. This proves the coNP lower
bound.

For the containment in ΣP
2 we argue as in the proof of Theorem 13. When

given an instance of one of the problems, a Turing machine may guess existen-
tially a k-state automaton B of the appropriate type, and if necessary, also a
⋄-substitution σ, and write these on its working tape—because the integer k is
given in unary notation, we have enough time to do that. Then the machine sim-
ply has to verify equivalence (w.r.t. the ⋄-substitution) of the input automaton
and automaton B—both accept finite languages, so this can be done in coNP.
Overall, this results in an ΣP

2 algorithm. ⊓⊔

In the remainder of this section we briefly recall what is known for the
“for all”-variants of the minimization problem for automata accepting finite
languages. By the definition of these problem variants it is easily seen, that
the first one from Theorem 14 belongs to ΣP

3 , while the second variant from
Theorem 14 is contained in ΣP

2 . We have to leave open the lower bounds for
these problems.
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Appendix

Proof (of Theorem 12, continued). Here we complete the proof that the set

S = { (dn+1$, ae), (dn+1$a, e), (dn+1$ae, λ), (#n+2$, wc) }

∪ { (#i, #n+2−id′n+2) | 0 ≤ i ≤ n + 2 }

∪ { (di#
j , #n+1−i−jd′i) | 1 ≤ i ≤ n + 1, 0 ≤ j ≤ n + 1 − i }

∪ { (di#
n+1−i$wi,j , bi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ti }

is a fooling set for the language L(A), which is used in the proof of Theo-
rem 12 Let (u, v) and (u′, v′) be two distinct elements from S. We have to show
that uv′ /∈ L or u′v /∈ L. We distinguish between the following cases for (u, v):

Let (u, v) = (dn+1$, ae). Then we have uv′ /∈ L(A), which can be seen as
follows. Reading u = dn+1$ takes A to state r. From there, only words from the
set Σ+ · { e, bi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ti } are accepted. But no possible suffix v′

is of that form.
Next let (u, v) = (dn+1$a, e). We do not have to consider the case (u′, v′) =

(dn+1$, ae) because it is symmetrical to a case discussed before. In the fol-
lowing we omit such symmetrical cases without explicitly stating. If (u′, v′) =
(di#

n+1−i$wi,j , bi,j) for appropriate i and j then the word u′v is not accepted
by A because reading u′ leads to a state of the input DFA Ai, and this state
has no outgoing e-transition. If (u′, v′) 6= (di#

n+1−i$wi,j , bi,j), then one can see
that uv′ /∈ L(A) because after reading dn+1$a the only words ending with e or
some bi,j symbol are accepted.

The case (u, v) = (dn+1$ae, λ) is easy. We have uv′ /∈ L(A) because u
belongs to L(A), the language L(A) is prefix-free, and all possible suffixes v′

are non-empty.
For (u, v) = (#n+2$, wc) we have already discussed the case where (u′, v′) is

of the form (di#
n+1−i$wi,j , bi,j). In the remaining cases the second component v′

ends on a symbol d′i, with 1 ≤ i ≤ n + 2. Such symbols may not appear after
reading the $ symbol. Hence the words uv′ do not belong to L(A).

Let (u, v) = (#i, #n+2−id′n+2). If (u′, v′) = (#i′ , #n+2−i′d′n+2), with i 6= i′,
then the word uv′ is of the form uv′ = #mdn+2, with m 6= n + 2, and so does
not belong to L(A). If (u′, v′) 6= (#i′ , #n+2−i′d′n+2) then it remains to consider
the cases where u′ starts with some di′ symbol, with 1 ≤ i′ ≤ n + 2. Then we
have u′v /∈ L(A) because uv it starts with di′ and ends with d′n+2.

Now let (u, v) = (di#
j , #n+1−i−jd′i), and (u′, v′) = (di′#

j′ , #n+1−i′−j′d′i′).
If i 6= i′, then uv′ /∈ L(A) because uv′ begins with di and ends with a non-
matching d′i′ . If i = i′, then it is j 6= j′. In this case the word uv′ does not have
the correct number of # symbols. If we have (u′, v′) = (di′#

n+1−i′$wi′,j′ , bi′,j′)
then the word uv′ = di#

jbi′,j′ does not belong to L(A) because a bi,j symbol
may only appear some time after a $ symbol, which is missing in uv′.

Finally it remains to consider the case where (u, v) = (di#
n+1−i$wi,j , bi,j)

and (u′, v′) = di′#
n+1−i′$wi′,j′ , bi′,j′), where (i, j) 6= (i′, j′). Here the word uv′

does not belong to L(A) because after reading the words u = di$wi,j the NFA A
is in state qi,j , and in this state it cannot make a transition on v′ = bi′,j′ . This
concludes the proof. ⊓⊔
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M. Kutrib, J.-T. Löwe, String Transformation for n-dimensional Image Compression, Re-
port 0203, May 2002

A. Klein, M. Kutrib, Grammars with Scattered Nonterminals, Report 0202, February 2002

A. Klein, M. Kutrib, Self-Assembling Finite Automata, Report 0201, January 2002

M. Holzer, M. Kutrib, Unary Language Operations and its Nondeterministic State Complexity,
Report 0107, November 2001

A. Klein, M. Kutrib, Fast One-Way Cellular Automata, Report 0106, September 2001

M. Holzer, M. Kutrib, Improving Raster Image Run-Length Encoding Using Data Order, Re-
port 0105, July 2001

M. Kutrib, Refining Nondeterminism Below Linear-Time, Report 0104, June 2001

M. Holzer, M. Kutrib, State Complexity of Basic Operations on Nondeterministic Finite Au-
tomata, Report 0103, April 2001


