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1 Introduction

One of the most popular algorithms for the conversion of finite automata into
equivalent regular expressions is the state elimination algorithm [27], whose per-
formance crucially relies on the elimination ordering of the states. This algorithm
is one of the few classical ones, see, e.g., [25], for converting finite automata into
equivalent regular expressions, which all look different at first glance, but, as
Sakarovitch [24] pointed out, are more or less a reformulation of the algorith-
mic idea of state elimination. The drawback of all these algorithms is that they
return expressions of exponential size in the worst case, and in fact they are
doomed to do so by a result of Ehrenfeucht and Zeiger [9], who exhibited a
family of languages for which an exponential blow-up is inevitable. The rough
upper bound of all of these algorithms is O(4n) on the size of the resulting reg-
ular expression, where n is the number of states of the given finite automaton.
Nevertheless, the desire to obtain shorter regular expressions can be traced back
to the work by McNaughton and Yamada [22], who already noticed the above
mentioned influence of the ordering in which the states of a given automaton
are processed.

Proving size bounds on the conversion of finite automata into equivalent
regular expressions is challenging, and is the subject of active research, see,
e.g., [8, 10, 14, 16, 17]. In particular, in [16] it is shown that deterministic finite
automata with binary input alphabet can be converted into regular expressions
of size at most O(1.742n). There, the main technical result concerns the prob-
lem of converting finite automata into regular expressions, parametrized by the
undirected cycle rank. The size bound is then derived by bounding the undi-
rected cycle rank of those. This has subsequently been improved to O(1.682n)
using the same method, by refining the bound on undirected cycle rank in [8]. In
this paper, we harness the theory of digraphs in order to get a further improved
algorithm. The proof has two key ingredients, as with the original algorithm pre-
sented in [16]. First, we provide a nontrivial extension of the technique from [16]
for converting finite automata into regular expressions, which relates cycle rank
and alphabetic width. The theorem reads as follows:

Theorem 1. Let L ⊆ Σ∗ be a regular language, and let r be a positive integer.
If L is accepted by an n-state nondeterministic finite automaton having cycle
rank at most r, then

alph(L) ≤ |Σ| · nr·O(log n).

Intuitively, the cycle rank of a finite automaton measures the nesting depth
of its directed cycles and the alphabetic width alph(L) of a language L is the
minimum size among all regular expressions describing the language L—if nec-
essary, we provide formal definitions of these terms in the forthcoming sections.
Throughout the paper we use standard graph theory as well as formal language
and automata theory notation. See, e.g., [3] and [18].

For the second ingredient, we need to develop fragments of a theory on
k-outdegenerate digraphs. This allows us to show that every digraph of small
average outdegree has a large induced subdigraph of small cycle rank. DAG-
width and Kelly-width are recently introduced digraph width measures [5, 19].
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Theorem 2. Let D be a digraph of order n with average outdegree d ≥ 2.
Then D has an induced subdigraph of order at least 2

d+1n, which is

1. of DAG-width at most 1,
2. of Kelly-width at most 2, and
3. of cycle rank O(log n).

Now following the basic strategy developed in [16], one can split up the state
set of the automaton into an “easy” and a “hard” part. The regular expression size
for converting the easy part is governed by the bound in Theorem 1. Converting
the hard part by state elimination yields an exponential blow-up in the size of
this part; but by Theorem 2, we can ensure that the hard part of the input for
the conversion is sufficiently small. We will thus obtain our main result.

Theorem 3. Let L be a regular language over a k-ary alphabet. If L is accepted
by an n-state deterministic finite automaton, then

alph(L) ≤ k · 4
k−1

k+1
n · nO(log n)2 .

In the case of binary alphabets, the above given theorem improves the best
previously known bound of O(1.682n) from [8] to O(1.587n).

2 Cycle Rank and Regular Expression Size

In this section, we derive Theorem 1, which gives a relation between cycle rank of
finite automata and size of equivalent regular expressions. The cycle rank r(D)
of a digraph D is defined inductively as follows: if D is acyclic, then r(D) = 0;
if D is strongly connected, then r(D) = 1 + minv∈V r(D − v); otherwise, the
cycle rank of D equals the maximum cycle rank among the strongly connected
components (SCCs) of D. The size, or alphabetic width, of a regular expression r
over the alphabet Σ, denoted by alph(r), is defined as the total number of
occurrences of letters of Σ in r. For a regular language L, we define its alphabetic
width, alph(L), as the minimum alphabetic width among all regular expressions
describing L.

We aim at extending the methods from [16], which were based on undirected
cycle rank, such that they work on digraphs. But moving from graphs to digraphs
entails a nontrivial complication in our case: the result from [16] yields regular
expressions of polynomial size for automata of bounded undirected cycle rank.
Bounding the directed cycle rank no longer gives us such a powerful tool: already
for acyclic finite automata, which are of cycle rank 0, a superpolynomial lower
bound of 2Ω(log n)2 on required regular expression size is known [17]. In order to
address this apparent difficulty, we collect a few preliminary results first.

The set of walks in a digraph D connecting a vertex s to a vertex t can
naturally be interpreted as a language, where the arc set of D serves as the
alphabet. Then an elementary result connecting the theory of digraphs with
formal language theory is the fact that this set of walks is a regular language [12,
Chapter V.5]. We introduce some notation about sets of walks. Let D = (V, A)
be a digraph, s, t be vertices in V , and U such that ∅ ⊆ U ⊆ V . We define the
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language Lst(D[U ]) of all s-t-walks in D[U ] as follows: for every arc (i, j) ∈ A, we
introduce an alphabet symbol aij . Then Lst(D[U ]) denotes the set of all walks
ai0i1ai1i2 · · · aik−2ik−1

aik−1ik in D[U ] that start in i0 = s, end in ik = t, and where
all internal vertices i1, i2, . . . , ik−1 of the walk are from U—note that s and t
are not necessarily members of U . For U = V we simply write Lst(D) instead
of Lst(D[V ]). Next, we collect some easy observations about walks in digraphs.
The first lemma concerns walks that start and end at the same vertex.

Lemma 4. Let D be a digraph. For v ∈ V , let C(v) denote the strongly con-
nected component of D that contains v. Then Lvv(D) = Lvv(D[C(v)]). ⊓⊔

The second observation concerns arbitrary s-t-walks in a digraph.

Lemma 5. Let D be a digraph, and let w be an s-t-walk in D. Then w can be
decomposed as w = x1av1v2

x2av2v3
· · ·xk−1avk−1vk

xk, such that

– v1, v2, . . . , vk is some ordering of a subset of the vertices that occur in w, and
– xi is in Lvivi

(D) for 1 ≤ i ≤ k. ⊓⊔

Observe that in the above decomposition, some of the xi may be identical
to the empty word, thus denoting an empty walk from vi to vi. We also need an
estimate for the size of a regular expression denoting all s-t-walks of bounded
length in a digraph. The following two results are essentially rephrasings of [10,
Theorem 20] and [10, Corollary 22].

Theorem 6. Let D = (V, A) be a digraph of order n, and let s, t be two vertices.
For each integer ℓ ≥ 1, the set Lst(D)≤ℓ can be described by a regular expression
of alphabetic width at most (n + 1) · ℓ log n+1.

The next corollary deals with acyclic digraphs and their induced language.

Corollary 7. Let D = (V, A) be an acyclic digraph of order n ≥ 2, and let s, t
be two vertices. Then the set Lst(D) can be described by a regular expression of
alphabetic width at most (n + 1) · (n − 1)log n+1.

Now we are ready to prove Theorem 1, which was mentioned in the in-
troduction, and states that alph(L) ≤ |Σ| · nr·O(log n), if L is accepted by an
n-state nondeterministic finite automaton having cycle rank at most r. This
upper bound immediately follows from the next lemma.

Lemma 8. Let D = (V, A) be a digraph of order n, let r ≤ n be a nonnegative
integer, and let s, t be two vertices in D. If D has cycle rank at most r, then

alph(Lst(D)) ≤
{

4rg(n)max(r−1,0)h(n), if D is strongly connected

4rg(n)rh(n), otherwise,

with g(n) = (n + 1) · (2n − 1)log n+1 and h(n) = (n − 1)log n+1.

Proof. The bounds are proven by lexicographic induction on (r, n). For r = 0,
we have alph(Lst(D)) ≤ h(n) by Corollary 7. For r ≥ 1, we carry out the the
induction step. There we distinguish two cases:
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1. The digraph D is strongly connected. Then D contains a vertex v such
that D − v has cycle rank at most r − 1. The McNaughton-Yamada equa-
tion [22] for eliminating state v yields

Lst(D) = Lst(D − v) ∪ Lsv(D − v) · Lvv(D − v)∗ · Lvt(D − v).

Since D− v is of order n− 1, we can apply the induction hypothesis to each
language on the right-hand-side. We obtain

alph (Lst(D)) ≤ 4 ·
(

4r−1g(n − 1)r−1h(n)
)

≤ 4rg(n)r−1h(n).

This completes the induction step for this case.
2. The digraph D has multiple strongly connected components. Let D′ be

the digraph obtained from D by adding a self-loop to each vertex. Then
Lemma 5 shows that each walk w in the set Lst(D) can be decomposed as
w = x1av1v2

x2av2v3
· · ·xk−1avk−1vk

xk, with k ≤ n, and each xi in Lvivi
(D),

for 1 ≤ i ≤ k. Thus, the set Lst(D) can be obtained from Lst(D
′)≤2n−1

by applying the substitution map σ : avv 7→ Lvv(D). Hence, we have
Lst(D) = σ

(

Lst(D
′)≤2n−1

)

. It remains to estimate the size of the regu-
lar expression obtained by this construction. By Lemma 4 holds Lvv(D) =
Lvv(D[C(v)]), where C(v) denotes the SCC containing v, so we have the
equality σ(avv) = Lvv(D[C(v)]). Since D has multiple SCCs, each set C(v)
is of cardinality smaller than n. So we can apply the induction hypothesis
to estimate the alphabetic width of Lvv(D[C(v)]) for each such vertex v. In
this way, we obtain

Lvv(D[C(vi)]) ≤ 4rg(|C(vi)|)r−1h(|C(vi)|)
≤ 4rg(n)r−1h(n).

By Lemma 6, the set Lst(D
′)≤2n−1 admits a regular expression of size at

most g(n). Applying the substitution σ to such an expression will blow up
its size by a factor of at most 4rg(n)r−1h(n). Thus we have

alph(Lst(D)) = alph
(

σ
(

Lst(D
′)≤2n−1

))

≤ g(n) · 4rg(n)r−1h(n),

and the induction step is completed also for this case. ⊓⊔

A similar bound was previously known for automata parametrized by undi-
rected cycle rank [16]. On the one hand, the previous result yields regular ex-
pressions of polynomial size for automata of undirected cycle rank in O(1). On
the other hand, there are many digraphs of directed cycle rank in O(1) but
undirected cycle rank in Ω(n). So Theorem 1 yields a quasipolynomial bound
for a much larger class of finite automata.
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3 Outdegeneracy and Digraph Width Measures

Since computing the treewidth of undirected graphs is NP-hard, several lower
bound methods have been devised, which are computationally easy. These can
serve as combinatorial bounds in proofs, or to speed up branching algorithms
for computing the treewidth. The degeneracy of a graph counts among the
easiest and most practical lower bounds on its treewidth [6]. In the following,
we generalize this result to digraphs, by giving a corresponding lower bound on
the DAG-width and Kelly-width of digraphs in terms of outdegeneracy.

In the theory of undirected graphs, the degeneracy of a graph is a measure
for the sparseness of a graph [11, 21]. Several generalizations of this notion to
the case of digraphs have been proposed in [4]; we deliberately choose one of
these, namely outdegeneracy, and take a closer look at it.

Let D = (V, A) be a digraph. In the following, let d+(v) and d−(v) denote the
outdegree and indegree of vertex v, respectively. A digraph D is k-degenerate,
if every induced subdigraph of D contains a vertex with at most k different
neighbors (that is, in- or out-neighbors) in that subdigraph. The degeneracy
of D, denoted by κ(D), is defined as the smallest integer such that D is k-
degenerate. In a similar vein, a digraph D is k-outdegenerate, if every induced
subdigraph of D has a vertex of outdegree at most k. The outdegeneracy of D,
denoted by κ+(D), is defined in an analogous manner to the degeneracy of the
digraph D. Both measures can be computed in linear time [4]. It is obvious from
the definitions that κ+(D) ≤ κ(D). Furthermore, for symmetric digraphs, the
two measures coincide. Also, a digraph D is 0-outdegenerate if and only if D is
acyclic. Finally, a straightforward induction on the order n of the digraph shows
that the number of arcs in a k-outdegenerate digraph is at most kn(n − 1)/2.

We turn to the definition of DAG-with and Kelly-width of a digraph. The
cops and visible robber game, as defined in [5], is given as follows: let D = (V, A)
be a digraph. Initially, the cops occupy some set of X ⊆ V vertices, with |X| ≤ k,
and the robber is placed on some vertex v ∈ V \ X. At any time, some of the
cops can reside outside the graph, say, in a helicopter. In each round, the cop
player chooses the next location X ′ ⊆ V for the cops. The stationary cops in
X ∩ X ′ remain in their positions, while the others go to the helicopter and fly
to their new position. During this, the robber player, knowing the cops’ next
position X ′ from wire-tapping the police radio, can run at great speed to any
new position v′, provided there is a (possibly empty) directed path from v to v′

in D−(X∩X ′), i.e., he has to avoid to run into a stationary cop, and to run along
a path that is reachable from his current position. Afterwards, the helicopter
lands the cops at their new positions, and the next round starts, with X ′ and v′

taking over the roles of X and v, respectively. The cop player wins the game
if the robber cannot move any more, and the robber player wins if the robber
can escape indefinitely. In the cop-monotone variant of the game, the cops are
not allowed to revisit a vertex once it has been vacated; in the invisible robber
variant, the robber is invisible for the cops; and in the inert robber variant, the
robber is only allowed to move if a cop is about to land on the robber’s current
position. The DAG-width of a digraph D is the minimum k such that k cops
have a winning strategy in the cop-monotone variant if and only if the DAG-
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width of D is at most k [5]. Similarly, the Kelly-width of D is the minimum k
such that k−1 cops have a winning strategy in the cop-monotone, inert invisible
robber variant [19].

The outdegeneracy of a digraph serves as a common lower bound for these
two measures:

Theorem 9. Let D be a digraph with κ+(D) ≥ k. Then the DAG-width of D
is at least k, and the Kelly-width of D is at least k + 1.

Proof. We prove in fact a slightly more general statement, in terms of the cops
and visible robber game: let D be a digraph with κ+(D) ≥ k. Then an inert
robber has a winning strategy against k cops in the cops and visible robber
game on D.

In analogy to the undirected case, we define the k-outcore of a graph as
the maximal induced subgraph in which every vertex has outdegree at least k.
This maximal induced subgraph is in fact unique [4]: it is obtained in a greedy
manner, by iteratively removing a vertex of minimum outdegree from the current
subdigraph, until all remaining vertices have outdegree at least k. The k-outcore
of a digraph D is nonempty if and only if κ+(D) ≥ k. The strategy for the robber
is to stay in the k-outcore of D. The robber only moves if a cop is about to land
on his current position v. In this case at most k−1 out-neighbors of v can remain
occupied by some cop. By definition, at least k out-neighbors of v belong to the
k-outcore of D, so the robber can flee to an unoccupied out-neighbor without
leaving the k-outcore. This strategy allows the robber to escape indefinitely.

The theorem now follows as a corollary to the claim we have just proved:
clearly, if an inert visible robber has a winning strategy against k cops, the
same holds a forteriori for variants of the game where the cop player is less
powerful (e.g., cop-monotone, invisible robber), or where the robber player is
more powerful, (e.g., non-inert). ⊓⊔

Unfortunately, there is no easy converse of this inequality: we recall from [20]
a family of digraphs of DAG-width and Kelly-width Ω(

√
n), which is are easily

observed to be 2-outdegenerate. Here, n denotes the order of the respective di-
graph. More precisely, the digraphs Jk defined in [20] each admit a planar draw-
ing as the union of k concentric, equally directed, 2k-cycles, which are connected
to each other by 2k radial k-paths, the first k of which are directed inwards,
while the remaining k are directed outwards; see Figure 1 for illustration. The
order of Jk is n = 2k2. Nevertheless, we can obtain a tight characterization if
the outdegeneracy is at most 1.

Lemma 10. Let D be a digraph and let k ∈ {0, 1}. Then the following are
equivalent:

1. D is k-outdegenerate,
2. D has DAG-width at most k, and
3. D has Kelly-width at most k + 1.

Proof. The digraph D is 0-outdegenerate iff D is acyclic iff the Kelly-width of D
is 1 [19] iff the DAG-width of D is zero [5].
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Fig. 1. A drawing of the digraph J4. In general, Jk is 2-outdegenerate but has Kelly-width
in Ω(k).

The case k = 1 is more interesting. We consider first the Kelly-width. By
Theorem 9, a digraph of Kelly-width 2 has outdegeneracy 1, so it remains to
show the reverse direction. To this end, we recall the characterization of digraphs
of Kelly-width at most 2 in terms of arc contractions [23]: a digraph has Kelly-
width at most 2 if and only if it can be converted to the empty digraph by
repeatedly (i) removing a vertex of outdegree 0, or (ii) locating a vertex of
outdegree 1 in the current digraph, followed by contracting the single outgoing
arc of that vertex. Assume D is 1-outdegenerate. We will prove by induction
on the order n of the digraph that D has Kelly-width at most 2. The base case
n = 0 is trivial. For n ≥ 1, let v be a vertex of outdegree at most 1 in D.
Then contracting the arc leaving v does not affect the outdegree of any vertex
in V \ {v}. Let D′ denote the digraph thus obtained. Since d+

D′(w) = d+
D(w)

for all vertices w in V \ {v}, the digraph D′ is again 1-outdegenerate. Applying
the induction hypothesis, D′ has Kelly-width at most 2, and D′ can be reduced
to the empty digraph in the desired fashion. This completes the proof of the
reverse direction for Kelly-width.

Regarding DAG-width, it is known [19] that digraphs of Kelly-width at
most 2 (and hence outdegeneracy at most 1) have DAG-width at most 1. For the
reverse implication, Kelly-width greater than 2 implies outdegeneracy greater
than 1, and thus, with the aid of Theorem 9, also DAG-width greater than 1. ⊓⊔

These characterizations show that the 1-outdegenerate digraphs form a ro-
bust family of digraphs. Let us remark that, as the width parameters grow,
these concepts diverge very soon: there are digraphs of DAG-width 4 and Kelly-
width 3, see [19].

4 Large Induced Subdigraphs of Small Directed Width

We now turn to the investigation of width measures on sparse digraphs. The
following known results illustrate the kind of bounds we are aiming at: each
undirected graph of average degree d ≥ 4 contains an induced subgraph of order
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at least d−17/18
d+1 n and treewidth at most 3, see [8]. Furthermore, the pathwidth

of 3-regular graphs is at most 1
6 + o(n), and graphs with average degree d have

treewidth at most 13dn
150 + o(n), see [13, Chapter 5]. All of these results rely on

the symmetry of the arc relation at some point in their proofs. We shall now
see how to derive similar bounds for unsymmetric digraphs.

Recall that the well-known Caro-Wei inequality [7, 26] can be used to bound
the order of a large independent set in a graph in terms of its average degree.
Notice that an independent set induces a 0-degenerate subgraph, and vice versa.
Consequently, that inequality was generalized to give a bound on the order
of a large d-degenerate induced subgraph in a given graph in [1]. A different
generalization of the Caro-Wei inequality, to the case of digraphs, was given
in [15], yielding a lower bound on the order of an acyclic set in a given digraph.
Observe that an acyclic set induces a 0-outdegenerate subdigraph, and vice
versa. Therefore, it is quite natural to ask for a joint generalization of the results
from both [1] and [15]. This is given by our next theorem. The proof is similar
to the proof of Turán’s Theorem using the probabilistic method given in [2,
Chapter 7].

Theorem 11. Let D = (V, A) be a digraph. Then D contains a k-outdegenerate
induced subdigraph of order at least

∑

v∈V min(1, k+1
d+(v)+1

). ⊓⊔

Proof. We utilize a randomized greedy algorithm, similar to the proof of Turán’s
Theorem using the probabilistic method given in [2, Chapter 7]. The algorithm
is as follows: we choose an ordering < on the vertex set V uniformly at random,
and we use a working set U ⊆ V , which is initially empty. Then we visit each
vertex v in the order given by <. For each v, we add v to U if and only if at
most k out-neighbors of v are already in U . This completes the description of
the algorithm.

We claim that the subdigraph induced by U is k-outdegenerate. To prove
this, we need to show that for each subset W ⊆ U , the digraph induced by W
contains a vertex of outdegree at most k. For W ⊆ U , let w be the last vertex
in W w.r.t. the ordering <. Then for each out-neighbor x of w in the induced
subdigraph D[W ], we have both x < w and x ∈ U . Thus, by construction of the
set U , vertex w can have at most k out-neighbors in D[W ]. Thus, the induced
subdigraph D[U ] is k-outdegenerate, as desired.

It remains to derive the claimed bound on the cardinality of U . We start
with a general observation about uniformly random orderings of a finite set V .
For a subset S ⊆ V and an element v ∈ S, let S<v denote the set of elements
in S that are smaller than v w.r.t. the ordering <. For 0 ≤ i < |S|, we have
Pr[ |S<v| = i ] = 1

|S| , since every position for v is equally likely. Similarly, we
have

Pr[ |S<v| ≤ i ] = min

(

1,
i + 1

|S|

)

,

for i ≥ 0.
Now we return to the randomized greedy algorithm. For a vertex v, let N+(v)

denote the set of out-neighbors of v. Observe that |N+(v) ∪ {v}| ≤ d+(v) + 1
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(and equality holds in case D is a loop-free digraph). The vertex v is added
to the working set U if and only if at most k out-neighbors are smaller than v
w.r.t. the ordering <. Using the notation introduced above, vertex v is added
to U if and only if |(N+(v) ∪ {v})<v| ≤ k. Thus,

Pr[v ∈ U ] = Pr[ |(N+(v) ∪ {v})<v| ≤ k ]

= min

(

1,
k + 1

|(N+(v) ∪ {v}|

)

≥ min

(

1,
k + 1

d+(v) + 1

)

.

For a vertex v, let Iv denote the indicator variable for the event “v ∈ U .” Then
E[ Iv ] = Pr[ v ∈ U ], and |U | =

∑

v∈V Iv. By linearity of expectation, we have

E[ |U | ] =
∑

v∈V

Pr[ v ∈ U ] ≥
∑

v∈V

min

(

1,
k + 1

d+(v) + 1

)

.

This bound on the expected size of U clearly implies the existence of an induced
k-outdegenerate subdigraph of that order, and the proof is completed. ⊓⊔

We have the following corollary in terms of the number of arcs in D, or,
equivalently, in terms of the average outdegree.

Corollary 12. Let D = (V, A) be a digraph of order n with average outde-
gree d ≥ 2k. Then D has an induced k-outdegenerate subdigraph of order at
least k+1

d+1 · n. ⊓⊔

Proof. For the special case of symmetric digraphs, a proof is sketched in [1, pp.
208f]. The argument carries over with obvious modifications, but entails some
careful calculations. For completeness, we include a streamlined proof.

We start with a bit of integer mathematics. Let k be a nonnegative integer,
let n and a be positive integers, and let d1, d2, . . . , dn be real numbers. Let w
denote the minimum possible value of the expression

n
∑

i=1

min

(

1,
k + 1

di + 1

)

, (4.1)

where the minimum is taken subject to the constraint

n
∑

i=1

di = a, and all di are nonnegative integers. (4.2)

For the following two claims, let b1, b2, . . . , bn be numbers such that the assign-
ment di = bi for 1 ≤ i ≤ n satisfies Condition (4.2).

Claim. If a ≥ 2kn and the assignment di = bi for 1 ≤ i ≤ n attains the
minimum of Equation (4.1) subject to Condition (4.2), then each of the bis is
either zero or greater than k.
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Proof. The claim trivially holds for n = 1, so we assume n ≥ 2. For the sake
of contradiction, assume di = bi, for 1 ≤ i ≤ n, is an assignment that attains
the minimum, and 0 < bj ≤ k, for some j. Pick an index j′ such that the value
bj′ is maximal among the bis. Then bj′ > k + 1, since a ≥ 2kn. Then define
cj = 0, cj′ = bj′ + bj , and ci = bi, for i 6= j, j′. The assignment di = ci again

fulfills Condition (4.2). But then min
(

1, k+1
bi+1

)

= min
(

1, k+1
ci+1

)

, for all i 6= j′,

and min
(

1, k+1
bj′+1

)

> min
(

1, k+1
cj′+1

)

, contradicting the assumed minimality of

the original assignment. This establishes the first claim. ⊓⊔

If a is large enough, we can also get rid of the zeros in the assignment:

Claim. Assume that for 1 ≤ i ≤ n, each bi is either zero or greater than k. If
a ≥ m · 2k for some m ≤ n, and the number of positive bis is ℓ, where ℓ < m,
then the sum in Equation (4.1) is not increased by changing one of the zeros
to 2k and by decreasing the positive bis by a total of 2k in such a way that each
of them is still at least 2k.

Proof. On the one hand, decreasing one of the positive bis by 1 leads to increas-
ing the sum by k+1

bi(bi+1) , and this is at most k+1
(2k+1)(2k+2) , since we have assumed

that after decreasing bi, the value bi − 1 is still at least 2k. By performing this
step for 2k times, the sum is increased by an amount of at most 2k(k+1)

(2k+1)(2k+2) .
Observe, that we can find a sufficiently large bi in each step, since the arithmetic
mean of the positive bis will be larger than 2k. On the other hand, if we assign
the value 2k instead of 0 to one of the dis, the term 1 is replaced with k+1

2k+1 . This

decreases the sum by exactly −1 + k+1
2k+1 = − k

2k+1 . All the steps taken together

do not increase the value of the sum, since we have 2k(k+1)
(2k+1)(2k+2) − k

2k+1 = 0.
This establishes the second claim. ⊓⊔

The above two claims together imply that for a ≥ 2kn, minimizing the sum
in Equation (4.1) subject to Condition (4.2) is equivalent to minimizing the sum

n
∑

i=1

k + 1

di + 1
(4.3)

subject to Condition (4.2).
Now Theorem 11 implies that D = (V, A) has an induced k-outdegenerate

subdigraph of order at least w—recall, that w refers to the minimum possible
value of the expression shown in Equation (4.1) subject to Condition (4.2). Since
for the number of arcs holds |A| = a ≥ 2kn, the corollary follows if we apply to
Equation (4.3) the inequality relating arithmetic and harmonic mean. ⊓⊔

Now we are ready to prove Theorem 2, which was stated in the introduction.
Namely, we can use the special case k = 1 to find in a digraph D with average
outdegree d ≥ 2 an induced subdigraph of order at least 2

d+1 · n, which has
Kelly-width 2, and consequently, cycle rank in O(log n).

Proof (of Theorem 2). By Corollary 12, the digraph D has a vertex subset U of
cardinality 2

d+1 ·n, such that D[U ] is 1-outdegenerate. According to Lemma 10,
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the digraph D[U ] has DAG-width at most 1 and Kelly-width at most 2. We
claim that the digraph D[U ] has cycle rank at most O(log n).

Namely, digraphs of small Kelly-width always have some small vertex subset
whose removal leaves a digraph with much smaller strongly connected subsets:
since D[U ] is a digraph of Kelly-width at most 2, there is a vertex subset X of
size at most 11, such that each strongly connected component Ci of D[U ] − X
is of order at most 2/3 times the order of D[U ]. This follows from a similar
property of digraphs of small directed treewidth [20], together with the known
relation between directed treewidth and Kelly-width [19]. By the definition of
cycle rank, we have

r(D[U ]) ≤ r(D[U ] − X) + |X| = max
i

r(D[Ci]) + 11.

Observe that the subdigraphs Ci again have Kelly-width at most 2. So we can
apply the above reasoning recursively, until after O(log n) times the maximum
order among the strongly connected components thus obtained equals 1. ⊓⊔

Also, observe that, since the Kelly-width of the subdigraph in the above proof
is 2, its D-width, and directed treewidth is in O(1), compare [5, 19]. Bounds for
several directed width measures on sparse digraphs now follow immediately:

Theorem 13. Let D be a digraph of order n with average outdegree d ≥ 2.
Then the cycle rank (directed pathwidth, respectively) of D is at most

d − 1

d + 1
· n + O(log n),

and the Kelly-width (D-width, DAG-width, directed treewidth, respectively) is at
most

d − 1

d + 1
· n + O(1).

Proof. Let U be a vertex subset as implied by Theorem 2. Using the definition
of cycle rank, we obtain

r(D) ≤ |U | + r(D − U) ≤ d − 1

d + 1
· n + O(log n).

The same bound holds for directed pathwidth, since directed pathwidth is
bounded above by cycle rank [15]. The bound for Kelly-width, D-width, DAG-
width and directed treewidth follows along the same lines. ⊓⊔

5 Upper Bound on Converting Finite Automata to Regular

Expressions

Now we are ready to finish the proof of Theorem 3, the main result of this
paper. The conversion strategy follows along similar lines as developed in [16].
There it was shown how one can split up the state set of the automaton into
an “easy” and a “hard” part. In our case the expression size for converting the
easy part is governed by the bound in Theorem 1. Converting the hard part by
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state elimination yields an exponential blow-up in the size of this part; but by
Theorem 2, we can ensure that the hard part is sufficiently small. Recall, that

we want derive an upper bound of k · 4
k−1

k+1
n · nO(log n)2 on the classic problem

of converting deterministic finite automata over k-ary alphabet into equivalent
regular expressions.

Proof (of Theorem 3). Let A = (Q, Σ, δ, q0, F ) be an n-state deterministic fi-
nite automaton accepting the language L, and let D be its underlying digraph.
For each pair of states (s, t), we derive a regular expression describing the lan-
guage Lst(D). Since A is deterministic, all vertices in D have outdegree at
most k. Therefore, by Theorem 2, the digraph D has an induced subdigraph
D[U ] of cycle rank O(log n), and of order at least 2

d+1 · n. Now we apply
Lemma 8 to D[U ]: for each pair of states (s, t) in Q × Q, there is a regular
expression describing Lst(D[U ]) of size at most nO(log n)2 . From these interme-
diate expressions, we obtain regular expressions Lst(D) by repeated application
of the McNaughton-Yamada-recurrence [22]. More precisely, for W ⊆ V and
v ∈ Q − W , we have

Lst(D[W ∪ {v}]) = Lst(D[W ]) ∪ Lsv(D[W ]) · Lvv(D[W ])∗ · Lvt(D[W ]).

Starting with W = U , we apply the recurrence |Q−U | = k−1
k+1 ·n times, and each

such application blows up the size of the intermediate expressions by a factor of
at most 4. Altogether, this yields regular expressions describing the sets Lst(D),

each of size at most 4
k−1

k+1
n · nO(log n)2 . The proof is completed by observing that

a regular expression for L(A) is obtained by a morphism that maps the arcs of
the digraph to suitable elements in Σ. Hence we obtain

alph(L(A)) ≤ |Σ| ·
∑

f∈F

alph(Lq0f (D))

≤ |Σ| · 4
k−1

k+1
n · nO(log n)2 ,

and thus, the stated claim follows. ⊓⊔

In the case of binary alphabets, this gives a substantial improvement over
the previously known bound of O(1.682n) of [8].

Theorem 14. Let L be a regular language over a binary alphabet. If L is ac-
cepted by an n-state deterministic finite automaton, then

alph(L) ≤ 4
1

3
n · nO(log n)2 ≤ O (1.588n) . ⊓⊔

For alphabet sizes three, four, and five, the results from [16] give regular
expressions of size O(2.209n), O(2.520n), and O(2.741n), respectively. These
bounds are correspondingly improved to 2n·nO(log n)2 , O(2.298n), and O(2.520n),
respectively.
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