
I F I G

R e s e a r c h

R e p o r t

Institut für Informatik

JLU Gießen

Arndtstraße 2

35392 Giessen, Germany

Tel: +49-641-99-32141

Fax: +49-641-99-32149

mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

Institut für Informatik

Minimal and Hyper-Minimal Biautomata

Markus Holzer Sebastian Jakobi

IFIG Research Report 1401

March 2014

IFIG Research Report

IFIG Research Report 1401, March 2014

Minimal and Hyper-Minimal Biautomata

Markus Holzer1 and Sebastian Jakobi2

Institut für Informatik, Universität Giessen

Arndtstraße 2, 35392 Giessen, Germany

Abstract. We compare deterministic finite automata (DFAs) and biautomata under the fol-
lowing two aspects: structural similarities between minimal and hyper-minimal automata,
and computational complexity of the minimization and hyper-minimization problem. Con-
cerning classical minimality, the known results such as isomorphism between minimal DFAs,
and NL-completeness of the DFA minimization problem carry over to the biautomaton case.
But surprisingly this is not the case for hyper-minimization: the similarity between almost-
equivalent hyper-minimal biautomata is not as strong as it is between almost-equivalent
hyper-minimal DFAs. Moreover, while hyper-minimization is NL-complete for DFAs, we
prove that this problem turns out to be computationally intractable, i.e., NP-complete, for
biautomata.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models
of Computation—Automata; F.1.3 [Computation by Abstract Devices]: Complexity
Measures and Classes—Reducibility and completeness; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems—Computations
on discrete structures; F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages—Decision problems;

Additional Key Words and Phrases: biautomata, almost-equivalence, hyper-minimization,
computational complexity

1E-mail: holzer@informatik.uni-giessen.de
2E-mail: sebastian.jakobi@informatik.uni-giessen.de

Copyright c© 2014 by the authors

1 Introduction

The minimization problem for finite automata is well studied in the literature,
see, e.g., [9] for a recent overview on some automata related problems. The prob-
lem asks for the smallest possible finite automaton that is equivalent to a given
one. Because regular languages are used in many applications and one may like
to represent the languages succinctly, this problem is also of practical relevance.
It is well known that for a given n-state deterministic finite automaton (DFA)
one can efficiently compute an equivalent minimal automaton in O(n log n)
time [11]. More precisely, the DFA minimization problem is complete for NL,
even for DFAs without inaccessible states [4]. On the other hand, minimiza-
tion of nondeterministic finite automata (NFAs) is highly intractable, namely
PSPACE-complete [14]. These results go along with the structural properties of
minimal finite automata. While minimal DFAs are unique up to isomorphism,
this is not the case for minimal nondeterministic state devices anymore [1]. In
fact, the characterization of minimal DFAs is one of the basic building blocks
for efficient DFA minimization algorithms.

When changing from minimization to hyper-minimization a quite similar
picture as mentioned above emerges. Hyper-minimization asks for the smallest
automaton that is equivalent to a given one up to a finite number of exceptions—
this form of “equivalence” is referred to as almost-equivalence in the literature.
Let us discuss the situation for hyper-minimal DFAs and NFAs in more detail.
First, all of the above mentioned computational complexity results remain valid
for hyper-minimization. Thus, computing a hyper-minimal DFA can be done
in O(n log n) time [10] and the hyper-minimization problem is NL-complete [6].
In fact it is known that minimization for DFAs linearly reduces to hyper-mini-
mization [10]. Moreover, the intractability result for NFAs remains, that is,
hyper-minimization for NFAs is PSPACE-complete [6], just as it is for ordinary
NFA minimization. What can be said about the structural properties of hyper-
minimal finite state machines? Neither hyper-minimal DFAs nor hyper-minimal
NFAs are unique up to isomorphism. Nevertheless, hyper-minimal DFAs obey
a structural characterization as shown in [2]. Almost-equivalent hyper-minimal
DFAs have isomorphic kernels and isomorphic preambles up to state acceptance.
Here the kernel of an automaton consists of the states that are reachable from
the start state by an infinite number of inputs; all other states belong to the
preamble of the automaton.

Recently, an alternative automaton model to deterministic finite automata,
the so called biautomaton (DBiA) [19] was introduced. Roughly speaking, a
biautomaton consists of a deterministic finite control, a read-only input tape,
and two reading heads, one reading the input from left to right (forward tran-
sitions), and the other head reading the input from the opposite direction, i.e.,
from right to left (backward transitions). An input word is accepted by a bi-
automaton, if there is an accepting computation starting the heads on the two
ends of the word meeting somewhere in an accepting state. Although the choice
of reading a symbol by either head is nondeterministic, a deterministic outcome
of the computation of the biautomaton is enforced by two properties: (i) The
heads read input symbols independently, i.e., if one head reads a symbol and

2

the other reads another, the resulting state does not depend on the order in
which the heads read these single letters. (ii) If in a state of the finite control
one head accepts a symbol, then this letter is accepted in this state by the
other head as well. Later we call the former property the ⋄-property and the
latter one the F -property. In [19] and a series of forthcoming papers [7, 8, 15,
18] it was shown that biautomata share a lot of properties with ordinary finite
automata. For instance, as minimal DFAs, also minimal DBiAs are unique up
to isomorphism [19]. Moreover, in [7] it was shown that classical DFA mini-
mization algorithms can be adapted to biautomata as well. As a first result we
show that biautomaton minimization is NL-complete as for ordinary DFAs.

Now the question arises, which of the structural similarities between almost-
equivalent or hyper-minimal DFAs similarly hold for biautomata as well? More-
over, what can be said about the computational complexity of biautomaton
hyper-minimization? We give answers to both questions in the forthcoming.
Some of the structural similarities found for almost-equivalent and hyper-minimal
DFAs carry over to the case of biautomata, but there are subtle differences. On
the one hand we show that the kernel isomorphism for almost-equivalent DFAs
carries over to almost-equivalent biautomata, but on the other hand, the iso-
morphism for the preamble for almost-equivalent hyper-minimal DFAs does
not transfer to the biautomaton case. In fact, we present an example, of two
almost-equivalent hyper-minimal biautomata the preambles of which are not
isomorphic at all—observe, that the size of both preambles must be the same
due to the hyper-minimality of the devices, and the kernel isomorphism. The ob-
served phenomenon is related to the structure of the almost-equivalence classes
of hyper-minimal biautomata. In contrast to hyper-minimal DFAs, where two
different but almost-equivalent states can only appear in the kernel, the induced
almost-equivalence classes in case of hyper-minimal biautomata may in addition
also span between preamble and kernel states, or even between two preamble
states. Later we use this fact in order to prove the main result of this paper,
namely that hyper-minimizing biautomata is not as easy as for DFAs. More pre-
cisely, we show that hyper-minimization for biautomata is NP-complete. This
is in sharp contrast to the case of hyper-minimal DFAs.

2 Preliminaries

A deterministic finite automaton (DFA) is a quintuple A = (Q, Σ, δ, q0, F),
where Q is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q
is the initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → Q
is the transition function. The language accepted by the deterministic finite
automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F }, where the transition function
is recursively extended to δ : Q × Σ∗ → Q as usual.

A deterministic biautomaton (DBiA) is a sixtuple A = (Q, Σ, ·, ◦, q0, F),
where Q, Σ, q0, and F are defined as for DFAs, and where · and ◦ are map-
pings from Q × Σ to Q, called the forward and backward transition function,
respectively. It is common in the literature on biautomata to use an infix nota-
tion for these functions, i.e., writing q · a and q ◦ a instead of ·(q, a) and ◦(q, a).
Similar as for the transition function of a DFA, the forward transition function ·

3

can be extended to · : Q × Σ∗ → Q by q · λ = q, and q · av = (q · a) · v, for all
states q ∈ Q, symbols a ∈ Σ, and words v ∈ Σ∗. The extension of the backward
transition function ◦ to ◦ : Q × Σ∗ → Q is defined as follows: q ◦ λ = q and
q◦va = (q◦a)◦v, for all states q ∈ Q, symbols a ∈ Σ, and words v ∈ Σ∗. Notice
that ◦ consumes the input from right to left, hence the name backward transi-
tion function. The DBiA A accepts a word w ∈ Σ∗ if there are words ui, vi ∈ Σ∗,
for 1 ≤ i ≤ k, such that w can be written as w = u1u2 . . . ukvk . . . v2v1, and

((. . . ((((q0 · u1) ◦ v1) · u2) ◦ v2) . . .) · uk) ◦ vk ∈ F.

The language accepted by A is L(A) = {w ∈ Σ∗ | A accepts w }.
The DBiA A has the ⋄-property, if (q · a) ◦ b = (q ◦ b) · a, for all q ∈ Q

and a, b ∈ Σ, and it has the F -property, if we have q · a ∈ F if and only
if q ◦ a ∈ F , for all q ∈ Q and a ∈ Σ. The biautomata as introduced in [19]
always had to satisfy both these properties, while in [7, 8] also biautomata that
lack one or both of these properties, as well as nondeterministic biautomata were
studied. Throughout the current paper, when writing of biautomata, or DBiAs,
we always mean deterministic biautomata that satisfy both the ⋄-property, and
the F -property, i.e., the model as introduced in [19]. For such biautomata the
following is known from the literature [7, 19]:

– (q · u) ◦ v = (q ◦ v) · u, for all states q ∈ Q and words u, v ∈ Σ∗,
– (q · u) ◦ vw ∈ F if and only if (q · uv) ◦ w ∈ F , for all states q ∈ Q and

words u, v, w ∈ Σ∗.

From this one can conclude that for all words ui, vi ∈ Σ∗, with 1 ≤ i ≤ k, we
have

((. . . ((((q0 · u1) ◦ v1) · u2) ◦ v2) . . .) · uk) ◦ vk ∈ F

if and only if
q0 · u1u2 . . . ukvk . . . v2v1 ∈ F.

Therefore, the language accepted by a biautomaton A can as well be defined as
L(A) = {w ∈ Σ∗ | q0 · w ∈ F }.

In the following we define the two DFAs contained in a DBiA, which accept
the language, and the reversal of the language accepted by the biautomaton. Let
A = (Q, Σ, ·, ◦, q0, F) be a DBiA. We denote by Qfwd (Qbwd, respectively) the
set of all states reachable from q0 by only using forward (backward, respectively)
transitions, i.e.,

Qfwd = { q ∈ Q | ∃u ∈ Σ∗ : q0 · u = q },

and

Qbwd = { q ∈ Q | ∃v ∈ Σ∗ : q0 ◦ v = q }.

Now we define the DFA Afwd = (Qfwd, Σ, δfwd, q0, Ffwd), with Ffwd = Qfwd ∩ F ,
and where δfwd(q, a) = q ·a, for all states q ∈ Qfwd and symbols a ∈ Σ. Similarly,
we define the DFA Abwd = (Qbwd, Σ, δbwd, q0, Fbwd), with Fbwd = Qbwd∩F , and
δbwd(q, a) = q◦a, for all q ∈ Q and a ∈ Σ. One readily sees that L(Afwd) = L(A).
Moreover, since q ◦ uv = (q ◦ v) ◦ u, one can also see L(Abwd) = L(A)R.

4

For a state q of an automaton A (DFA or DBiA), the right language of q
is the language LA(q) accepted by the automaton that is obtained from A by
making q its initial state. Notice that the right language of the initial state q0

of A is LA(q0) = L(A). We say that two automata A and A′ are equivalent,
denoted by A ≡ A′, if L(A) = L(A′). Similarly, if q is a state of A and q′ a
state of A′, then q and q′ are equivalent, for short q ≡ q′, if LA(q) = LA′(q′).
An automaton A is minimal if there is no automaton B of the same type, that
has fewer states than A and satisfies A ≡ B.

Let L be a language over Σ and let u, v ∈ Σ∗. The left derivative of L by u
is the language u−1L = {w ∈ Σ∗ | uw ∈ L }, and the right derivative of L by v
is Lv−1 = {w ∈ Σ∗ | wv ∈ L }. Notice that u−1(Lv−1) = (u−1L)v−1, so we may
denote both-sided derivatives by u−1Lv−1 = {w ∈ Σ∗ | uwv ∈ L }. Derivatives
are used in [19] for the definition of the canonical biautomaton of a regular
language, which is similar to the canonical DFA as described in [3]. The set
of states of the canonical biautomaton for a regular language L consists of all
derivatives of L—this is a finite set because L is regular—and the right language
of a state u−1Lv−1 is the language u−1Lv−1. We often use regular expressions to
describe languages—see, e.g., [12]. As usual we identify an expression with the
language it describes, and by abuse of notation we also use regular expressions
as names for states.

Recently, the notions of almost-equivalence and hyper-minimality were in-
troduced [2]. Two languages L and L′ are almost-equivalent, denoted by L ∼ L′,
if their symmetric difference L△L′ := (L\L′)∪(L′\L) is finite. This notion nat-
urally carries over to automata and states: two automata A and A′ are almost-
equivalent, for short A ∼ A′, if L(A) ∼ L(A′), and two states q and q′ of A and,
respectively, A′ are almost-equivalent, for short q ∼ q′, if LA(q) ∼ LA′(q′). An
automaton A is hyper-minimal if there is no automaton B of the same type,
that has fewer states than A and satisfies A ∼ B. A useful concept for the
study of almost-equivalent automata is the partitioning of the state set into
preamble and kernel states. A state q of an automaton A is a kernel state if
it is reachable from the initial state of A by an infinite number of inputs, oth-
erwise q is a preamble state. In case A is a biautomaton over alphabet Σ, this
means that q is a kernel state if and only if there are infinitely many pairs of
words u, v ∈ Σ∗ such that (q0 · u) ◦ v = q—here q0 is the initial state, and ·
and ◦ are the transition functions of A. The set of all preamble states of A is
denoted by Pre(A), and the set of kernel states is Ker(A).

We assume familiarity with the basic concepts of complexity theory [12,
20] such as reductions, completeness, and the inclusion chain NL ⊆ P ⊆ NP.
Here NL is the set of problems accepted by nondeterministic logarithmic space
bounded Turing machines. Moreover, let P (NP, respectively) denote the set of
problems accepted by deterministic (nondeterministic, respectively) polynomial
time bounded Turing machines.

5

3 Structural Similarity Between Minimal Automata

The well-known fact that two equivalent minimal DFAs are isomorphic can be
formulated as follows.

Theorem 1. Let A = (Q, Σ, δ, q0, F) and A′ = (Q′, Σ, δ′, q′0, F
′) be two min-

imal deterministic finite automata with A ≡ A′. Then there exists a mapping
h : Q → Q′ that is bijective, and that satisfies the following conditions:

1. q ≡ h(q), for all q ∈ Q (in particular q ∈ F if and only if h(q) ∈ F ′).
2. h(q0) = q′0.
3. h(δ(q, a)) = δ′(h(q), a), for all q ∈ Q and a ∈ Σ.

Further, the following characterization of minimal DFAs is well known.

Theorem 2. A deterministic finite automaton is minimal if and only if all its
states are reachable, and there is no pair of distinct, but equivalent states.

An isomorphism as in Theorem 1 can also be found between equivalent
minimal biautomata, which follows from results from [19].

Theorem 3. Let A = (Q, Σ, ·, ◦, q0, F) and A′ = (Q′, Σ, ·′, ◦′, q′0, F
′) be two

minimal biautomata1 with A ∼ A′. Then there exists a mapping h : Q → Q′

that is bijective, and that satisfies the following conditions:

1. q ≡ h(q), for all q ∈ Q (in particular q ∈ F if and only if h(q) ∈ F ′).
2. h(q0) = q′0.
3. h(q · a) = h(q) ·′ a, and h(q ◦ a) = h(q) ◦′ a, for all q ∈ Q and a ∈ Σ.

Also the following characterization of minimal DBiAs, which is similar to
Theorem 2 for DFAs, was shown in [7].

Theorem 4. A biautomaton is minimal if and only if all its states are reach-
able, and there is no pair of distinct, but equivalent states.

We can draw another connection between biautomata and finite automata.
Recall that any DBiA A contains the two DFAs Afwd and Abwd, accepting the
languages L(Afwd) = L(A) and L(Abwd) = L(A)R. In fact, if A is a minimal
biautomaton, then the two contained DFAs are minimal, too, as the following
result shows.

Lemma 5. Let A = (Q, Σ, ·, ◦, q0, F) be a minimal biautomaton. Then Afwd

is a minimal deterministic finite automaton for L(A) and Abwd is a minimal
deterministic finite automaton for L(A)R.

Proof. Notice that if q is a state of Afwd, then LAfwd
(q) = LA(q), and if q is

a state of Abwd, then LAbwd
(q) = LA(q)R. Therefore, if Afwd or Abwd contains

a pair of equivalent states, then these states are also equivalent in the biau-
tomaton A. Now if A is a minimal biautomaton, then Theorem 4 implies that
it does not contain a pair of distinct, but equivalent states. Therefore also the
DFAs Afwd, and Abwd contain no such pair. Since by definition all states of Afwd

and Abwd are reachable, both DFAs must be minimal, due to Theorem 2. ⊓⊔

1 Remember that throughout this paper a biautomaton is always a deterministic biautomaton
which satisfies both the ⋄-property and the F -property.

6

The following example shows that the converse of Lemma 5 is not true,
which means that a DBiA A where both DFAs Afwd and Abwd are minimal
needs not to be minimal itself.

Example 6. Consider the biautomaton A = (Q, Σ, ·, ◦, q0, F) with the state
set Q = {q0, q1, . . . , q6}, initial state q0, final states F = {q2, q4, q5} and the
transition functions · and ◦ of which can be read from Figure 1—solid arrows
denote forward transitions by ·, and dashed arrows denote backward transitions
by ◦. Obviously the three accepting states q2, q4, and q5 are equivalent, so we

q0 q1 q2

q3 q4

q5

a b

b b

a

a

Fig. 1. A non-minimal biautomaton A where both contained DFAs Afwd and Abwd are mini-
mal. The sink state q6 and all transitions to it are not shown.

know by Theorem 4 that this is not a minimal biautomaton. However, one can
easily see that both contained DFAs Afwd and Abwd are minimal. This shows
that the converse of Lemma 5 does not hold.

4 Structural Similarity Between Hyper-Minimal Automata

The notions of almost-equivalence and hyper-minimality were introduced in [2].
There it was shown that two almost-equivalent hyper-minimal DFAs are iso-
morphic in their kernels, and isomorphic in their preambles (up to acceptance
values of preamble states). The following theorem, which summarizes results
from [2], should be compared to the corresponding Theorem 1 for equivalent
minimal DFAs.

Theorem 7. Let A = (Q, Σ, δ, q0, F) and A′ = (Q′, Σ, δ′, q′0, F
′) be two min-

imal deterministic finite automata with A ≡ A′. Then there exists a mapping
h : Q → Q′ satisfying the following conditions.

1. If q ∈ Pre(A) then q ∼ h(q), and if q ∈ Ker(A) then q ≡ h(q).
2. If q0 ∈ Pre(A) then h(q0) = q′0, and if q0 ∈ Ker(A) then h(q0) ∼ q′0.
3. The restriction of h to Ker(A) is a bijection between the kernels of A and A′,

that is compatible with taking transitions:
3.a We have h(Ker(A)) = Ker(A′), and if q1, q2 ∈ Ker(A) with h(q1) = h(q2)

then q1 = q2.
3.b We have h(δ(q, a)) = δ′(h(q), a), for all q ∈ Ker(A) and all a ∈ Σ.

7

Further, if A and A′ are hyper-minimal then also the following condition holds.

4. The restriction of h to Pre(A) is a bijection between the preambles of A
and A′, that is compatible with taking transitions, except for transitions
from preamble to kernel:
4.a We have h(Pre(A)) = Pre(A′), and if q1, q2 ∈ Pre(A) with h(q1) = h(q2)

then q1 = q2.
4.b We have h(δ(q, a)) = δ′(h(q), a), for all q ∈ Pre(A) and all a ∈ Σ, that

satisfy δ(q, a) ∈ Pre(A).

Notice that the bijection between the preamble states does not preserve
finality of states. Further, the mapping h does not necessarily respect the tran-
sitions from preamble states to kernel states—see Condition 4.b of Theorem 7.
Thus, two almost-equivalent hyper-minimal DFAs can differ in the following:

– acceptance values of preamble states,
– transitions leading from preamble to kernel states,
– the initial state, if the preamble is empty.

However, the transitions connecting preamble and kernel of almost-equivalent
DFAs cannot differ arbitrarily. Assume that we have a state q ∈ Pre(Q), and
some symbol a ∈ Σ, such that δ(q, a) ∈ Ker(Q). Then it could be that the
two states h(δ(q, a)) and δ′(h(q), a) are different, but they must at least be
almost-equivalent. This follows from the following result from [2].

Lemma 8. Let A = (Q, Σ, δ, q0, F) and A′ = (Q′, Σ, δ′, q′0, F
′) be two (not

necessarily distinct) deterministic finite automata, with q ∈ Q and q′ ∈ Q′.
Then q ∼ q′ if and only if δ(q, w) ∼ δ′(q′, w), for all w ∈ Σ∗. Moreover, q ∼ q′

implies δ(q, w) ≡ δ′(q′, w), for all words w ∈ Σ∗ with |w| ≥ k = |Q × Q′|.

Also a characterization of hyper-minimal DFAs, which is similar to Theo-
rem 2, was shown in [2]:

Theorem 9. A deterministic finite automaton is hyper-minimal if and only if
it is minimal, and there is no pair of distinct but almost-equivalent states such
that one of them is in the preamble.

Now let us investigate, which of the structural similarity results for almost-
equivalent hyper-minimal DFAs carry over to biautomata. We first show that
a result similar to Lemma 8 also holds for biautomata.

Lemma 10. Let A = (Q, Σ, ·, ◦, q0, F) and A′ = (Q′, Σ, ·′, ◦′, q′0, F
′) be two

biautomata. Let q ∈ Q and q′ ∈ Q′, then q ∼ q′ if and only if (q · u) ◦ v ∼
(q′·′u)◦′v, for all words u, v ∈ Σ∗. Moreover, q ∼ q′ implies (q·u)◦v ≡ (q′·′u)◦′v,
for all words u, v ∈ Σ∗ with |uv| ≥ k = |Q × Q′|.

Proof. Assume there are words u, v ∈ Σ∗ such that the states p = (q · u) ◦ v
and p′ = (q′ ·′ u) ◦′ v are not almost-equivalent. This means that there are
infinitely many words w ∈ LA(p)△LA′(p′), which implies that there are in-
finitely many words uwv ∈ LA(q)△LA′(q′). Thus states q and q′ are not

8

almost-equivalent. Therefore, if (q · u) ◦ v ∼ (q′ ·′ u) ◦′ v, for all u, v ∈ Σ∗,
then states q and q′ are almost-equivalent. The reverse implication is trivial:
if (q · u) ◦ v ∼ (q′ ·′ u) ◦′ v, for every u, v ∈ Σ∗, then we obtain q ∼ q′ by
choosing u = v = λ. This proves the first part of the Lemma.

For the second part assume q ∼ q′, and consider two words u = a1a2 . . . aℓ

and v = am . . . aℓ+2aℓ+1, with a1, a2, . . . , am ∈ Σ such that |uv| = m ≥ k.
Consider the sequence of state pairs (qi, q

′
i), for 0 ≤ i ≤ m, that the automata

pass through in their computations (q · u) ◦ v and (q′ ·′ u) ◦′ v:

(qi, q
′
i) =

(q, q′), for i = 0,

(qi−1 · ai, q′i−1 ·
′ ai) for 1 ≤ i ≤ ℓ,

(qi−1 ◦ ai, q′i−1 ◦
′ ai) for ℓ + 1 ≤ i ≤ m.

Because m ≥ |Q × Q′|, there must be integers i, j with 0 ≤ i < j ≤ m, for
which we have (qi, q

′
i) = (qj , q

′
j).

If j ≤ ℓ then the word u can be written as u = u1u2u3 such that

q · u1 = qi, qi · u2 = qi, (qi · u3) ◦ v = p,

q′ ·′ u1 = q′i, q′i ·
′ u2 = q′i, (q′i ·

′ u3) ◦
′ v = p′.

If the states p = (q · u) ◦ v and p′ = (q′ ·′ u) ◦′ v are not equivalent, then there is
a word w ∈ LA(p)△LA′(p′), and it follows that u1u

n
2u3wv ∈ LA(q)△LA′(q′),

for all n ≥ 0. This is a contradiction to q ∼ q′.
If ℓ + 1 ≤ i then we can find a similar partition of the word v = v3v2v1,

such that a word w in the symmetric difference of the two states p = (q · u) ◦ v
and p′ = (q′ ·′u)◦′ v induces infinitely many words uwv3v

n
2 v1 ∈ LA(q)△LA′(q′),

for all n ≥ 0.
It remains to discuss the case i ≤ ℓ < j. Now the words u and v can be

written as u = u1u2 and v = v2v1 such that

q · u1 = qi, (qi · u2) ◦ v1 = qi, qi ◦ v2 = p,

q′ ·′ u1 = q′i, (q′i ·
′ u2) ◦

′ v1 = q′i, q′i ◦
′ v2 = p′.

Now, if the states p = (q·u)◦v and p′ = (q′·′u)◦′v are not equivalent, then there is
a word w ∈ LA(p)△LA′(p′), and it follows that u1u

n
2wv2v

n
1 ∈ LA(q)△LA′(q′),

for all n ≥ 0. This is again a contradiction to q ∼ q′, hence the two states
(q · u) ◦ v and (q′ ·′ u) ◦′ v must be equivalent. ⊓⊔

Now we come to a mapping between the states of two almost-equivalent
biautomata. As in the case of finite automata, we can find an isomorphism
between the kernels of the two automata. However, we cannot find a similar
isomorphism between their preambles. Of course, two almost-equivalent hyper-
minimal biautomata must have the same number of states, and if their kernels
are isomorphic, then also their preambles must be of same size. But still we
cannot always find a bijective mapping that preserves almost-equivalence, as in
the case of finite automata. We will later see an example for this phenomenon,
but first we present our result on the structural similarity between almost-
equivalent minimal biautomata.

9

Theorem 11. Let A = (Q, Σ, ·, ◦, q0, F) and A′ = (Q′, Σ, ·′, ◦′, q′0, F
′) be two

minimal biautomata with A ∼ A′. There exists a mapping h : Q → Q′ that
satisfies the following conditions.

1. If q ∈ Pre(A) then q ∼ h(q), and if q ∈ Ker(A) then q ≡ h(q).
2. If q0 ∈ Pre(A) then h(q0) = q′0, and if q0 ∈ Ker(A) then h(q0) ∼ q′0.
3. The restriction of h to Ker(A) is a bijection between the kernels of A and A′,

that is compatible with taking transitions:
3.a We have h(Ker(A)) = Ker(A′), and if q1, q2 ∈ Ker(A) with h(q1) = h(q2)

then q1 = q2.
3.b We have h(q · a) = h(q) ·′ a and h(q ◦ a) = h(q) ◦′ a, for all q ∈ Ker(A)

and all a ∈ Σ.

Proof. In order to define the mapping h we choose for every state q ∈ Q tow
words uq and vq as follows: If q is a kernel state of A then there are infinitely
many pairs u, v ∈ Σ∗ such that (q0 · u) ◦ v = q. Hence we can choose for
every kernel state q ∈ Ker(A) two words uq and vq with |uqvq| ≥ k = |Q × Q′|
such that q = (q0 · uq) ◦ vq. Moreover, for every preamble state q ∈ Pre(A),
we fix some shortest words uq and vq, i.e., where |uqvq| is shortest possible,
such that also (q0 · uq) ◦ vq = q. The mapping h : Q → Q′ is then defined by
h(q) = (q′0 ·

′ uq) ◦
′ vq. In the following we show that this mapping satisfies the

statements of the theorem. Since A ∼ A′ it must be q0 ∼ q′0. If q0 ∈ Pre(Q),
then we have uq0

= vq0
= λ, and so h(q0) = q′0, which proves one part of

Statement 2. From Lemma 10 we obtain (q0 · uq) ◦ vq ∼ (q′0 ·
′ uq) ◦

′ vq, for all
preamble states q ∈ Pre(A), and further even (q0 ·uq)◦vq ≡ (q′0 ·

′uq)◦
′ vq, for all

kernel states q ∈ Ker(A). This proves Statement 1. Now, if q0 ∈ Ker(A), then
q′0 ∼ q0 ≡ h(q0), which proves the other part of Statement 2. Moreover, for all
kernel states q ∈ Ker(A) we have q ≡ h(q), which implies

h(q · a) ≡ q · a ≡ h(q) ·′ a and h(q ◦ a) ≡ q ◦ a ≡ h(q) ◦′ a,

for all symbols a ∈ Σ. Since A′ is a minimal biautomaton, it does not contain a
pair of different, but equivalent states. Therefore it must be h(q · a) = h(q) ·′ a
and h(q ◦ a) = h(q) ◦′ a, for all a ∈ Σ, which proves Statement 3.b.

It remains to prove Statement 3.a, namely that the mapping is bijective
between the kernels of the two DBiAs. If q ∈ Ker(A) then |uqvq| ≥ |Q′|, so
the computation path in A′ that leads from q′0 to h(q) must contain a cycle.
Hence state h(q) must be a kernel state of A′, and we get h(Ker(A)) ⊆ Ker(A′).
Moreover, the mapping h is injective, which can be seen as follows: if h(p) =
h(q), then we know p ≡ h(p) = h(q) ≡ q, but since A is a minimal biautomaton,
this implies p = q. Therefore it is |Ker(A)| ≤ |Ker(A′)|. By exchanging the roles
of the automata A and A′ we can also find an injective mapping h′ : Q′ → Q that
satisfies h′(Ker(A′)) ⊆ Ker(A), which in turn shows that |Ker(A′)| ≤ |Ker(A)|.
Altogether we obtain |Ker(A)| = |Ker(A′)|, so the mapping h must also be
surjective on Ker(A′). This concludes our proof. ⊓⊔

Notice that Theorem 11 requires the almost-equivalent DBiAs A and A′

to be minimal, but not necessarily hyper-minimal. Of course, the theorem also

10

holds for hyper-minimal automata, since these are always minimal. However, the
question is whether we can find more structural similarities—like Statement 4.b
from Theorem 7 on DFAs—if both DBiAs are hyper-minimal. Unfortunately the
answer is no, as the following example demonstrates.

Example 12. Consider the biautomaton A which is depicted on top in Fig-
ure 2—as usual, transitions which are not shown lead to a non-accepting sink
state, which is also not shown. The state labels of the eight states in the lower
two rows of the automaton denote the right languages of the respective states.
The kernel of A consists of those states, and the sink state. The right languages
of the states q0, q1, and q2, which constitute the preamble of A, are as follows:
LA(q0) = L(A) = (a+ b)ba∗b+ c∗a, LA(q1) = ba∗b+λ, and LA(q2) = ba∗b. One
can verify that A satisfies the ⋄- and the F -property. Let us first show that A
is hyper-minimal.

Claim. The biautomaton A depicted on top in Figure 2 is hyper-minimal.

Proof. Assume B is a minimal biautomaton that is almost-equivalent to A.
We have to show that B has at least as many states as A. We know from
Theorem 11, that the kernels of A and B are isomorphic, hence it suffices to
show that B has at least three states in its preamble. Let us denote the initial
state of B by qB

0 , and its forward and backward transition functions by ·B
and ◦B, respectively. We have qB

0 ∼ q0 because B ∼ A, and by Lemma 10
follows (qB

0 ·B u) ◦B v ∼ (q0 · u) ◦ v, for all u, v ∈ Σ∗. Since state q0 is not
almost-equivalent to any kernel state of A, also state qB

0 is not a kernel state
of B either—remember that the kernels of A and B are isomorphic. Further,
also the state q1 = q0 · a is not almost-equivalent to any kernel state, and not
almost-equivalent to q0, therefore the state qB

0 ·B a must be a another preamble
state in B, too. Let us denote this state by qB

1 .
If we can show that B has another preamble state, then we know that A is

hyper-minimal. Therefore assume for the sake of contradiction, that qB
0 and qB

1

are the only preamble states of B. Because no kernel state of A is almost-
equivalent to q1, and due to the isomorphism between the kernels of A and B,
state qB

1 is the only state of B that is almost-equivalent to state q1 of automa-
ton A. Because q1 ∼ q2, state qB

1 is also the only state of B almost-equivalent
to q2. By Lemma 10, the state q2 = q0 · b of A must be almost-equivalent to
state qB

0 ·B b of B, so we conclude qB
0 ·B b = qB

1 = qB
0 ·B a. Now we consider two

cases, namely whether qB
1 is an accepting state, or not.

If qB
1 = qB

0 ·B a is not accepting, then also the state qB
0 ◦B a must not

be accepting due to the F -property of B. However, state qB
0 ◦B a must be

almost-equivalent to state q0 ◦ a, which is the accepting kernel state c∗ in A.
By Theorem 11, also the corresponding kernel state of B must be accepting,
therefore this cannot be the target of the transition qB

0 ◦B a. Since there is
no other kernel state which is almost-equivalent to c∗, we conclude that the
automaton B must have yet another preamble state qB

0 ◦B a, different from qB
0

and qB
1 —a contradiction.

The other case is similar: if qB
1 = qB

0 ·B b is an accepting state, then also
state qB

0 ◦B b must be accepting. Moreover, this state must be almost-equivalent

11

to the kernel state q0 ◦ b, i.e., the state (a+ b)ba∗ of A. The corresponding
kernel state of B is also non-accepting, so it cannot be the target of the transi-
tion qB

0 ◦B b. Again, there is no other kernel state in B that is almost-equivalent
to the state (a+ b)ba∗, so B must possess another preamble state, different
from qB

0 and qB
1 . This concludes our proof. ⊓⊔

Now consider the DBiA A′, depicted on the bottom of Figure 2. This bi-
automaton accepts the language L(A′) = (a + b)ba∗b + cc∗a, so it is almost-
equivalent to A. Since A and A′ have the same number of states and A is
hyper-minimal, the automaton A′ is hyper-minimal, too. Consider a mapping h
from the states of A to the states of A′, that satisfies the conditions of Theo-
rem 11. Between the kernels of the automata, the mapping is clear. Moreover,
since q0 and q′0 are preamble states, it must be h(q0) = q′0. This can even be
concluded if q0 and q′0 were not the initial states, because state q′0 of A′ is the
only state that is equivalent to q0, and h must satisfy q ∼ h(q) for all states q.
With the same argumentation we obtain h(q1) = h(q2) = q′2. The mapping h is
now fully defined, so in this example, there is no other possible mapping from
the states of A to the states of A′ that preserves almost-equivalence.

Notice that mapping h is not a bijection between the preambles: because
we have h(q1) = h(q2) = q′2, it is not injective, and it neither is surjective,
since no state of A is mapped to state q′1 of B. This shows that the bijection
Condition 4.a of Theorem 7 for preambles of deterministic finite automata does
not hold for biautomata.

Similarly, also Condition 4.b of Theorem 7 cannot be satisfied here, which
is witnessed by the following. We have h(q0 ◦ a) = h(c∗) = c∗—here c∗ in h(c∗)
denotes the kernel state of A, and c∗ after the equation symbol denotes the
kernel state of A′—but it is h(q0) ◦B a = q′0 ◦B a = q′1, so h(q0 ◦ a) 6= h(q0) ◦B a.

Of course there exist bijective mappings between the state sets of the two
automata A and A′, but none of these can preserve almost-equivalence because
the corresponding almost-equivalence classes in the state sets are not always of
same size. For example, there are two states in A that are almost-equivalent
to q1, namely q1 itself and q2, but in A′ there is only state q′2 in its equivalence
class.

In the previous example we have seen two hyper-minimal biautomata, where
one biautomaton (the lower automaton from Figure 2) has an almost-equivalence
class of states that is cut by the preamble-kernel border: the preamble state q′1
is almost-equivalent to the kernel state c∗. In the other biautomaton (the upper
automaton from Figure 2) all almost-equivalence classes lie entirely in either
the preamble or the kernel. Now one may ask, whether for a given biautomaton
one can always find an almost-equivalent hyper-minimal biautomaton where
no almost-equivalence class contains both a kernel and a preamble state. But
even this is not possible: in the proof of the forthcoming Theorem 14 we will
see a biautomaton where every almost-equivalent biautomaton must contain a
preamble state that is almost-equivalent to some kernel state—cf. Figure 4.

Another question is whether two almost-equivalent states, from which one
is a preamble state, can only differ in acceptance, i.e., whether their symmetric

12

(a+b)ba∗ ba∗ a∗b c∗

a+b λ a∗ c∗a

a
a, b

b

a

b
b

a

b
b

c

c

a, b

a, b
aa

a

c

a

preamble

kernel

q0

q1 q2

a bb a

c

b
b b

b

(a+b)ba∗
ba∗ a∗b c∗

a+b λ a∗ c∗a

a
a, b

b

a

b
b

a

b
b

c

c

a, b

a, b
aa

a

c

a

preamble

kernel

q′0

q′1q′2

a, bb

a

c

c cb
b

Fig. 2. Two hyper-minimal biautomata that are almost-equivalent. Biautomaton A (top)
accepts the language L(A) = (a + b)ba∗b + c∗a, and A′ (bottom) accepts the language
L(A′) = (a+b)ba∗b+cc∗a. The preambles are Pre(A) = {q0, q1, q2} and Pre(A′) = {q′0, q

′

1, q
′

2}.
The states q1, q2, q′1, and q′2 have the following right languages: LA(q1) = ba∗b + λ,
LA(q2) = LA′(q′2) = ba∗b, and LA′(q′1) = cc∗. The gray shading of state pairs denotes almost-
equivalence, i.e., we have q1 ∼ q2, a + b ∼ λ, and q′1 ∼ c∗.

13

difference is at most {λ}. Also this is not the case, which can also be seen in
the automaton from Figure 4, namely for the states q1 and q′1.

We have seen in Lemma 5 that the DFAs Afwd, and Abwd contained in a min-
imal DBiA A are minimal DFAs for the language L(A), and L(A)R, respectively.
Notice that this relation does not hold if we consider hyper-minimal automata:
the biautomaton A from Example 12 is hyper-minimal. But the contained
DFA Afwd is not hyper-minimal because the two preamble states q1 and q2

almost-equivalent, which contradicts the characterization of hyper-minimal DFAs
by Theorem 9. In fact, one can check that for every hyper-minimal biautoma-
ton B that is almost-equivalent to A, either Bfwd or Bbwd is not hyper-minimal.

Due to the lack of structural similarity in the preambles of almost-equivalent
hyper-minimal biautomata, we do not hope for a nice characterization of hyper-
minimal biautomaton, as we have seen in Theorems 2, 4, and 9. Another effect
related to these unsatisfying structural properties of hyper-minimal biautomata
will show up in the following section, where we show that hyper-minimizing
biautomata is computationally hard.

5 Computational Complexity of (Hyper)-Minimization

Given a deterministic finite automaton, it is an easy task to construct an equiva-
lent minimal automaton. A lot of minimization algorithms for DFAs are known,
the most effective of them being Hopcroft’s algorithm [11] with a running time
of O(n log n), where n is the number of states of the input DFA. In fact, the
decision version of the DFA minimization problem—given a DFA A and an
integer n, decide whether there exists an n-state DFA B with A ≡ B—is NL-
complete [4].

Concerning minimization of biautomata, it was discussed in [7] how classical
DFA minimization techniques can also be applied to DBiAs. In the following
we investigate the computational complexity of the minimization problem for
biautomata, and show that it is NL-complete, too. For proving NL-hardness we
give a reduction from the following variant of the graph reachability problem [16,
17] which is NL-complete, too.

Reachability: given a directed graph G = (V, E) with V = {v1, v2, . . . , vn},
where every vertex has at most two successors, and at most two prede-
cessors, decide whether vn is reachable from v1.

2

The next theorem reads as follows:

Theorem 13 (DBiA Minimization Problem). The problem of deciding for
a given biautomaton A, and an integer n, whether there exists an n-state biau-
tomaton B with A ≡ B, is NL-complete.

2 The general graph reachability problem can be reduced to the case where every vertex has
at most two successors by appending after each vertex that has more than two successors
a small tree-like subgraph to simulate the multiple outgoing edges. A similar construction
can be used to reduce the number of predecessors, to obtain a graph where also the number
of predecessors of a vertex is at most two.

14

Proof. For the NL upper bound we use the following algorithm for computing
the number k of equivalence classes of the state set of A. Let q1, q2, . . . qm be
some fixed order of the states of A, and initially set k = 0. For all states qi (in
ascending order) do the following: if qi 6≡ qj , for all j < i, then increment k.
Finally, if k ≤ n then the answer is yes, otherwise it is no. Because A has the
⋄-property, and the F -property, it suffices to consider only forward transitions
to decide whether qi 6≡ qj . Therefore, in order to check whether qi 6≡ qj holds, we
can check equivalence of the two DFAs obtained from A by making qi, and qj ,
respectively, the initial state, and considering only forward transitions. Since
(in-)equivalence of DFAs can be decide in NL, the whole algorithm can be im-
plemented on a non-deterministic logarithmic space-bounded Turing machine.

For NL-hardness we give a reduction from the above described variant of the
graph reachability problem. The idea is to transform the graph into a DFA A1

that accepts the empty language if the instance of the graph reachability prob-
lem is a “no” instance, and it accepts a non-empty, and non-universal language
otherwise. Then an equivalent DBiA A is built by a cross-product construction
of A1 and the reverse of A1. The biautomaton A is equivalent to a single-state
biautomaton if and only if the graph reachability problem is a “no” instance.
The only problem in this approach is to make sure that the construction of the
reverse of A1 can be done by a logarithmic space-bounded Turing machine, be-
cause in general this construction induces an exponential blow-up in the number
of states of the finite automaton. Therefore we construct the DFA A1 such that
its reversal is also a deterministic automaton.

Let G = (V, E), with V = {v1, v2, . . . , vn} be a directed graph where every
vertex has at most two successors, and at most two predecessors. We construct
the partial DFA A1 = (Q, Σ, δ, q0, F)—here partial means that some transitions
of A1 may be undefined—over the alphabet Σ = {a, b} as follows: The states
set consists of the vertices and edges of G, i.e., Q = V ∪ E, the initial state
is q0 = v1, and set of final states is F = {vn}. The transitions in states vi ∈ V
are defined as follows:

– if vi has two successors vj1 and vj2 , i.e., if (vi, vj1), (vi, vj2) ∈ E, and j1 < j2,
then δ(vi, a) = (vi, vj1) and δ(vi, b) = (vi, vj2),

– if vi has one successors vj , i.e., if (vi, vj) is the only edge in E with vi as on
the left-hand side, then δ(vi, a) = (vi, vj),

Finally, the transitions in states (vi, vj) ∈ E are defined as follows:

– if (vi, vj) is the only edge in E with vertex vj on the right-hand side, then
δ((vi, vj), a) = vj ,

– if there are two edges (vi1 , vj) and (vi2 , vj) in E with vertex vj on the right-
hand side, then δ((vi1 , vj), a) = vj and δ((vi2 , vj), b) = vj .

All other transitions are undefined. Note that every state (vi, vj) ∈ E has exactly
one outgoing and one ingoing transition, and every state vi ∈ V has at most one
outgoing and at most one ingoing transition for each alphabet symbol. There-
fore, the reverse automaton AR

1 = (Q, Σ, δR, vn, {v1}), where all transitions are
reversed, and the initial and (single) final state are interchanged is also a partial

15

DFA. The biautomaton A can now be constructed by a cross-product construc-
tion, simulating A1 in the first component using its forward transitions, and
simulating AR

1 in the second component using backward transitions—see [19]
for details of this construction. Clearly this construction can be realized by a
logarithmic space-bounded deterministic Turing machine.

It remains to prove the correctness of the reduction. First assume that in
the graph G the vertex vn is not reachable from v1. Then clearly the lan-
guage L(A1) = L(A) is empty, so there exists a single-state biautomaton B
that is equivalent to A. Next assume vn is reachable from v1 in G. Then clearly
the language L(A) = L(A1) is not empty, and because v1 6= vn it is also not Σ∗.
Therefore there exists no single-state biautomaton B that is equivalent to A.
Since NL = coNL [13, 21], the theorem is proven. ⊓⊔

Now we turn to hyper-minimization. For deterministic finite automata the
situation is similar as in the case of classical minimization: efficient hyper-
minimization algorithms with running time O(n log n) are known [5, 10], and it
was shown in [6] that the hyper-minimization problem for DFAs is NL-complete.
On the one hand, since classical DFA minimization methods also work well for
DBiAs, one could expect that hyper-minimization of DBiAs is as easy as for
ordinary DFAs. On the other hand, the problems related to the structure of
hyper-minimal biautomata, which we discussed in Section 4, already give hints
that hyper-minimization of DBiAs may not be so easy. In fact, we show in the
following that the hyper-minimization problem for biautomata is NP-complete.
To prove NP-hardness we give a reduction from the NP-complete MAX-2-SAT

problem [20] which is defined as follows.

MAX-2-SAT: given a Boolean formula ϕ in conjunctive normal form,
where each clause has exactly two literals, and an integer k, decide
whether there exists an assignment that satisfies at least k clauses of ϕ.

Before we give a detailed proof of NP-hardness, we want to describe the
key idea of the reduction. Given as instance of MAX-2-SAT a formula ϕ and
number k, we construct a DBiA Aϕ such that for every clause that can be
satisfied in ϕ, we can save one state of Aϕ, obtaining an almost-equivalent
DBiA. Every clause of ϕ will be translated to a part of the biautomaton using
a separate alphabet, so that the clause gadgets in Aϕ are mostly independent
from each other. Assume that ϕi = (ℓi1 ∨ ℓi2) is a clause of ϕ, and the first
literal is ℓi1 = xu, and the second is ℓi2 = xv, for some variables xu and xv.
Then the DBiA Aϕ contains the structure which is depicted in Figure 3.

The states q1 and q′1 correspond to literal ℓi1 , and states q2 and q′2 to the
literal ℓi2 . States pu and pv correspond to the variables xu and xv, respectively,
and are shared by all clause gadgets related to these variables. Now assume
that there is a truth assignment ξ to the variables that satisfies clause ϕi,
say by ξ(xu) = 1. Then we make the preamble state pu accepting, and merge
the preamble state q′1 to the almost-equivalent state q1. To preserve the ⋄-
property of the automaton, we further re-route the backward c transition of the
initial state, making state s1 the target of the transition. The case where the
clause ϕi is satisfied by the second literal corresponds to the similar situation,

16

preamble kernel

q0

q1

q2

q′1

q′2

s

s1

s2

t1

t2

pu

pv

b1

b2

a1

b1

a2

b2

c

c

c

a1, b1, b2a1, b1, b2

a2

a1

a2, b1, b2

a1, b2

a2, b1

c

c

Fig. 3. Simplified structure of Aϕ corresponding to the clause ϕi = (xu∨xv). The gray shading
denotes almost-equivalence of states.

where state pv stays non-accepting, state q′2 is merged to q2, and the target of
the backward c transition from q0 is state s2. The changing of acceptance of
preamble states only introduces a finite number of errors. Further, the merging
of preamble states to almost-equivalent kernel states also yields an almost-
equivalent automaton.3 Therefore, if k clauses of ϕ can be satisfied, then k
states of Aϕ can be saved.

The other direction, i.e., the deduction of a truth assignment ξ from a given
automaton B that is almost-equivalent to Aϕ, is similar: let ξ(xu) = 1 if and
only if state pu of automaton B is accepting. Now assume that state B has k
states less than Aϕ. The reduction will make sure that only the states q′1 and q′2
can be saved. If for example state q′1 is not present in B, then the initial state
of B must enter state q1 on reading symbol b1 with a forward transition. Due
to the F -property of B, the state pu reached from the initial state by taking a

3 In general, this needs some more argumentation. Here the described changes in the au-
tomaton preserved the ⋄-property, and the F -property. Therefore the languages accepted
by the original and the modified biautomata are the same as the languages accepted by the
contained DFAs (using only forward transitions). Now almost-equivalence of these DFAs,
and thus, of the biautomata, follows from the fact that merging preamble states to almost-
equivalent kernel states in a DFA preserves almost-equivalence.

17

backward b1 transition must be accepting. Since the variable states are shared
by all clause gadgets, the information that pu is accepting—i.e., that variable xu

should be assigned truth value 1—is transported to all other clause gadgets that
use variable xu. Therefore, no state corresponding to the negative literal xu can
be saved, i.e., no clause can be satisfied by a literal xu.4 It may be the case that
both states q′1 and q′2 are merged to their almost-equivalent kernel states q1

and q2, respectively. But then, due to the ⋄-property, the initial state must go
to some state s′ on reading a c symbol with a backward transition, and this
state s′ must go to state t1 on a forward b1 transition, and it must go to state t2
on a forward b2 transition. Such a state is not present in the automaton Aϕ,
so this state s′ is an additional state in the preamble of B. Hence, even if both
states q′1 and q′2 are merged into the kernel, the clause gadget in B cannot save
more than one state compared to the clause gadget in Aϕ. Altogether, for every
state that B has less than A, there is a clause of ϕ that is satisfied by ξ.

We now present our result on the NP-hardness of the hyper-minimization
problem with a detailed proof.

Theorem 14. The problem of deciding for a given biautomaton A, and an
integer n, whether there exists an n-state biautomaton B, with A ∼ B, is NP-
hard.

Proof. Let ϕ and k form an instance of the MAX-2-SAT problem where k is an
integer, and ϕ = ϕ1 ∧ϕ2 ∧ · · ·∧ϕm is a Boolean formula in conjunctive normal-
form over the set of variables X = {x1, x2, . . . , xn}, and where each clause ϕi

contains exactly two literals ℓi1 and ℓi2 . Instead of directly constructing the
DBiA Aϕ for the instance of the hyper-minimization problem, we describe the
language Lϕ accepted by this biautomaton. The integer k′ for the instance of
the hyper-minimization problem will be the number of states of Aϕ minus k, i.e.,
for each clause that has to be satisfied in ϕ a state of Aϕ is to be saved. From
the definition of Lϕ one can see that Aϕ can indeed be constructed from ϕ in
polynomial time. After the definition of Lϕ we will analyze the structure of Aϕ

and prove the correctness of the described reduction.
Let us define the language Lϕ. The alphabet Σ over which Lϕ is defined is

Σ = {$} ∪
m
⋃

i=1

Σ(i) ∪
n
⋃

j=1

m+1
⋃

h=1

{#j,h},

where for 1 ≤ i ≤ m the alphabet Σ(i) is

Σ(i) = {a
(i)
1 , a

(i)
2 } ∪ B

(i)
1 ∪ B

(i)
2 ∪ {c(i), d(i), e

(i)
1 , e

(i)
2 , f

(i)
1 , f

(i)
2 , f

(i)
3 , f

(i)
4 , f

(i)
5 },

with

B
(i)
1 =

m+1
⋃

h=1

{b
(i)
1,h} and B

(i)
2 =

m+1
⋃

h=1

{b
(i)
2,h}.

4 The reader may have noticed that there is still a possibility to “cheat:” one could use
accepting and non-accepting copies of variable states in the preamble in order to satisfy a
lot more clauses than possible. We take care of this problem in the detailed proof. (The
problem can be solved by using many copies b1,j and b2,j of the b1 and b2 symbols, each
connected to a different copy pu,j of variable states. If the number of these copies is larger
than the number of clauses, then the “cheat” turns out to be a bad trade-off.)

18

The language Lϕ consists of clause languages Lϕi
and variable languages Lxj

:

Lϕ =
m
⋃

i=1

Lϕi
∪

n
⋃

j=1

Lxj
.

The variable languages Lxj
, for 1 ≤ j ≤ n, are defined as follows:

Lxj
=

m+1
⋃

h=1

(

{#j,h} · {$}
∗ · {#j,h} · Bxj ,h

)

,

where the set Bxj ,h contains the symbol b
(i)
1,h (b

(i)
2,h, respectively) if and only if

the first (second, respectively) literal in clause ϕi corresponds to the variable xj .
More formally,

Bxj ,h = { b
(i)
1,h | ϕi = (ℓi1 ∨ ℓi2) and ℓi1 ∈ {xj , xj} }

∪ { b
(i)
2,h | ϕi = (ℓi1 ∨ ℓi2) and ℓi2 ∈ {xj , xj} }.

For 1 ≤ i ≤ m, the clause language Lϕi
is defined over the alphabet ({$}∪Σ(i))∗

as follows—for a better readability we omit the upper index (i) for symbols
from Σ(i):

– If ϕi = (xi1 ∨ xi2) then

Lϕi
= a1 · (e

∗
1 + d+c) + B1 · (e

+
1 + d∗c) + a2 · (e

∗
2 + d∗c) + B2 · (e

+
2 + d+c)

+ $+ ·
(

f1 · (e
∗
1 + d+c) · f1 + f2 · (e

∗
2 + d∗c) · f2

+ f3 · ((a1 + B2) · d
+ + (a2 + B1) · d

∗) · f3

+ f4 · ((a1 + B1 + B2) · d
+ + a2 · d

∗) · f4

+ f5 · (a1 · d
+ + (a2 + B1 + B2) · d

∗) · f5

)

· $+.

– If ϕi = (xi1 ∨ xi2) then Lϕi
is defined similar as in the first case, but we use

(e+
2 + d∗c) instead of (e∗2 + d∗c): (parts which are the same as in the first

case are shown grayed out)

Lϕi
= a1 · (e

∗
1 + d+c) + B1 · (e

+
1 + d∗c) + a2 · (e

+
2 + d∗c) + B2 · (e

+
2 + d+c)

+ $+ ·
(

f1 · (e
∗
1 + d+c) · f1 + f2 · (e

+
2 + d∗c) · f2

+ f3 · ((a1 + B2) · d
+ + (a2 + B1) · d

∗) · f3

+ f4 · ((a1 + B1 + B2) · d
+ + a2 · d

∗) · f4

+ f5 · (a1 · d
+ + (a2 + B1 + B2) · d

∗) · f5

)

· $+.

– If ϕi = (xi1∨xi2) then Lϕi
is defined as in the first case, but we use (e+

1 +d+c)
instead of (e∗1 + d+c).

– If ϕi = (xi1∨xi2) then Lϕi
is defined as in the first case, but we use (e+

1 +d+c)
instead of (e∗1 + d+c), and (e+

2 + d∗c) instead of (e∗2 + d∗c).

19

This concludes the definition of the language Lϕ.
Let Aϕ = (Q, Σ, ·, ◦, q0, F) be the canonical biautomaton [19] for Lϕ, with

state set Q = {u−1Lϕv−1 | u, v ∈ Σ∗ }, initial state q0 = Lϕ, set of final
states F = { q ∈ Q | λ ∈ q }, and where q · a = a−1q and q ◦ a = qa−1 for
all q ∈ Q and a ∈ Σ. Further let k′ = |Q| − k. That the instance (Aϕ, k′)
can be constructed in polynomial time from the given instance (ϕ, k) of the
MAX-2-SAT problem can be seen as follows. Every clause language induces a
fixed number of states in Aϕ, and except for the $ symbol the clause languages
are defined over disjoint alphabets. Hence the number of states corresponding
to clause languages is linear in the number of clauses. Further, the number
of states induced by the variable languages is O(mn), so the automaton Aϕ

can be constructed in polynomial time. Before we show the correctness of the
reduction, let us analyze the structure of Aϕ. The preamble of Aϕ consists of
the states

Pre(Aϕ) = {q0} ∪ { q0 · b
(i)
x,h, q0 ◦ b

(i)
x,h | 1 ≤ i ≤ m, 1 ≤ h ≤ m + 1, x ∈ {1, 2} },

which can be seen as follows. Let 1 ≤ i ≤ m, 1 ≤ h ≤ m + 1, and assume
ϕi = (ℓi1 ∨ ℓi2) with ℓi1 ∈ {xu, xu} and ℓi1 ∈ {xv, xv}, then

q0 · b
(i)
1,h = e

(i)
1

+
+ d(i)∗c(i), q0 ◦ b

(i)
1,h = #u,h$∗#u,h,

q0 · b
(i)
2,h = e

(i)
2

+
+ d(i)+c(i), q0 ◦ b

(i)
2,h = #v,h$∗#v,h.

One can see from the descriptions of the languages Lϕi
and Lxj

, that these states

are only reachable by reading a single symbol from
⋃m

i=1(B
(i)
1 ∪ B

(i)
2), so they

are preamble states. By examining all other states that can be reached from the

initial state by reading a symbol which is not in
⋃m

i=1(B
(i)
1 ∪ B

(i)
2), one can see

that there are no further preamble states. For example consider the state q0 ·

a
(i)
1 . This state can also be reached from q0 by reading words from $+f1 with

forward transitions and words from f1$
+ with backward transitions. Therefore,

state q0 · a, and all states reachable from it are kernel states. The reader is
invited to verify that all other states of Aϕ are kernel states, too.

Figure 4, which is similar to Figure 3 shown before the proof, exemplarily
shows a part of the structure of Aϕ that corresponds to a clause language Lϕi

,
for ϕi = (xu ∨ xv). The states are renamed as follows:

20

preamble kernel

q0

q1

q2

q′1

q′2

s

s1

s2

t1

t2

pu,1

...

pu,m+1

pv,1

...

pv,m+1

b1,1

b1,m+1

b2,1

b2,m+1

a1

b1,h

a2

b2,h

c

c

c

a1, b1,h, b2,h

a2

a1

a2, b1,h, b2,h

a1, b2,h

a2, b1,h

c

c

Fig. 4. Structure of Aϕ corresponding to clause ϕi = (xu ∨ xv). The gray shading denotes
almost-equivalence of states.

q
(i)
1 := q0 · a

(i)
1 = e

(i)
1

∗

+ d(i)+c(i),

q
′(i)
1 := q0 · b

(i)
1,h = e

(i)
1

+
+ d(i)∗c(i), for 1 ≤ h ≤ m + 1,

q
(i)
2 := q0 · a

(i)
2 = e

(i)
2

+
+ d(i)∗c(i),

q
′(i)
2 := q0 · b

(i)
2,h = e

(i)
2

+
+ d(i)+c(i), for 1 ≤ h ≤ m + 1,

s(i) := q0 ◦ c(i) = (a
(i)
1 + B

(i)
2) · d(i)+ + (a

(i)
2 + B

(i)
1) · d(i)∗,

s
(i)
1 := (q0 · $f

(i)
4) ◦ f

(i)
4 $ = (a

(i)
1 + B

(i)
1 + B

(i)
2) · d(i)+ + a

(i)
2 · d(i)∗,

s
(i)
2 := (q0 · $f

(i)
5) ◦ f

(i)
5 $ = a

(i)
1 · d(i)+ + (a

(i)
2 + B

(i)
1 + B

(i)
2) · d(i)∗,

t
(i)
1 := q

(i)
1 ◦ c(i) = d(i)+,

t
(i)
2 := q

(i)
2 ◦ c(i) = d(i)∗.

Note that the following almost-equivalences hold between those states:

q
(i)
1 ∼ q

′(i)
1 , q

(i)
2 ∼ q

′(i)
2 , s(i) ∼ s

(i)
1 ∼ s

(i)
2 , t

(i)
1 ∼ t

(i)
2 ,

In fact, the mentioned states are not almost-equivalent to any other states,
which can be seen as follows. The right languages of above described states for

21

the clause ϕi contain infinitely many words with d(i) symbols. Therefore, these
states cannot be almost-equivalent to states which correspond to derivatives of
some clause language Lϕj

, with j 6= i, nor to states corresponding to derivatives
of variable languages. Thus, the above states could only be almost-equivalent to
states that correspond to some derivative of the clause language Lϕi

. But this is
also not the case, which can be verified by inspection of the regular expression
for Lϕi

. Finally, notice that also the states

pu,h := q0 ◦ b
(i)
1,h = #u,h$∗#u,h, and pv,h := q0 ◦ b

(i)
2,h = #v,h$∗#v,h,

for 1 ≤ h ≤ m + 1, which correspond to the variables xu and xv, are not
almost-equivalent to any other state.

Now we are ready to show the correctness of the reduction. To do this, we
prove the following two claims:

Claim (1). If there exists a biautomaton that is almost-equivalent to Aϕ and
that has k′ = |Q| − k states, where Q is the state set of Aϕ, then there exists a
truth assignment that satisfies at least k clauses of ϕ.

Claim (2). If there is a truth assignment satisfying k clauses of ϕ, then there
exists a biautomaton that is almost-equivalent to Aϕ and that has k′ = |Q| − k
states, where Q is the state set of Aϕ.

The first claim is proven as follows:

Proof (of Claim (1)). Let B = (Q′, Σ, ·′, ◦′, q′0, F
′) be a minimal biautomaton

with at most k′ states, satisfying B ∼ Aϕ. Then we know from Theorem 11
that the kernels of the two automata are isomorphic. So in the following we
may identify the kernel states of B with the derivatives of Lϕ that constitute
the kernel states of Aϕ. Since |Q′| ≤ |Q| − k, and the kernels of both automata
are isomorphic, the preamble of B contains at most |Pre(Aϕ)| − k states. The

only states in Pre(Aϕ) that can be saved are q
′(i)
1 = q0 · b

(i)
1,h and q

′(i)
2 = q0 · b

(i)
2,h,

with 1 ≤ i ≤ m and 1 ≤ h ≤ m + 1, because the other preamble states q0

and q0 ◦ b
(i)
x,h, for x ∈ {1, 2} and 1 ≤ i ≤ m, are not almost-equivalent to any

other states. A state q
′(i)
1 (or q

′(i)
2 , respectively) of Aϕ can be saved if and only

if in B we have q′0 ·′ b
(i)
1,h = q′0 ·′ a

(i)
1 (or q′0 ·′ b

(i)
2,h = q′0 ·′ a

(i)
2 , respectively), for

all integers h, with 1 ≤ h ≤ m + 1, i.e., if state q
′(i)
1 (or q

′(i)
2 , respectively) is

merged to the almost-equivalent kernel state q
(i)
1 (or q

(i)
2 , respectively).

We first show that at most one state can be saved in each clause gadget.
Consider the case where for some clause ϕi = (ℓi1 ∨ ℓi2), with 1 ≤ i ≤ m,

both q
′(i)
1 and q

′(i)
2 are merged to the kernel states q

(i)
1 and q

(i)
2 , respectively.

This means that in B we have for all h, with 1 ≤ h ≤ m + 1:

q′0 ·
′ b

(i)
1,h =

{

e
(i)
1

∗

+ d(i)+c(i) if ℓi1 is positive,

e
(i)
1

+
+ d(i)+c(i) if ℓi1 is negative,

q′0 ·
′ b

(i)
2,h =

{

e
(i)
2

∗

+ d(i)∗c(i) if ℓi2 is positive,

e
(i)
2

+
+ d(i)∗c(i) if ℓi2 is negative.

22

It follows (q′0 ·
′ b

(i)
1,h)◦′ c(i) = d(i)+ and (q′0 ·

′ b
(i)
2,h)◦′ c(i) = d(i)∗, for 1 ≤ h ≤ m+1.

Since B has the ⋄-property, the state s′(i) := q′0 ◦ c(i) must lead to state d(i)+ on

symbols b
(i)
1,h and a

(i)
1 , and it must lead to state d(i)∗ on symbols b

(i)
2,h and a

(i)
2 .

Such a state s′(i) is not present in automaton Aϕ (though it is almost equivalent

to the states s(i), s
(i)
1 , and s

(i)
2), so it must be an additional preamble state of B.

Thus, for each clause ϕi, the number of states in Pre(B), that can be reached
by reading a symbol from Σ(i) is equal to, or by one smaller than the number
of states in Pre(Aϕ) reachable by such symbols. Since |Pre(B)| ≤ |Pre(Aϕ)|−k,
there must be k clauses ϕα1

, ϕα2
, . . . ϕαk

, such that for each α ∈ {α1, α2, . . . , αk}

we have that q
′(α)
1 is merged to q

(α)
1 , or q

′(α)
2 is merged to q

(α)
2 . We use this

to construct the truth assignment ξ : X → {0, 1} for ϕ as follows. For each
index α ∈ {α1, α2, . . . , αk} consider the clause ϕα = (ℓα1

∨ ℓα2
).

– If q
′(α)
1 is merged to q

(α)
1 , and ℓα1

= xu, for some xu ∈ X, then set ξ(xu) = 1.

– If q
′(α)
1 is merged to q

(α)
1 , and ℓα1

= xu, for some xu ∈ X, then set ξ(xu) = 0.

– If q
′(α)
2 is merged to q

(α)
2 , and ℓα2

= xv, for some xv ∈ X, then set ξ(xv) = 1.

– If q
′(α)
2 is merged to q

(α)
2 , and ℓα2

= xv, for some xv ∈ X, then set ξ(xv) = 0.

For all remaining variables xj ∈ X that have not yet been assignment a truth
value, set ξ(xj) = 0.

Let us first see, that there is no variable that gets assigned both values 0
and 1. Assume that there is such a variable xj . Then there must be clauses ϕα

and ϕα′ with α, α′ ∈ {α1, α2, . . . , αk}, such that the variable xj appears positive
in ϕα and negative in ϕα′ . Assume that xj = ℓα1

is the first literal of ϕα,
and xj = ℓα′

2
is the second literal of α′—the other cases can be handled similarly.

Since xj gets assigned truth value 1, the state q
′(α)
1 must have been merged

to q
(α)
1 , which means that for all h, with 1 ≤ h ≤ m + 1 we have

q′0 ·
′ b

(α)
1,h = e

(α)
1

∗

+ d(α)+c(α) ∈ F ′.

Since B has the F -property, also the preamble states q′0◦
′b

(α)
1,h , for 1 ≤ h ≤ m+1,

must be in F ′. Recall that the state (q′0 ◦′ b
(α)
1,h) of automaton B is almost-

equivalent to state q0 ◦ b
(α)
1,h = pj,h of Aϕ, for 1 ≤ h ≤ m + 1. Since xj also gets

assigned truth value 0, the state q
′(α′)
2 must have been merged to q

(α′)
2 , which

means that for all h, with 1 ≤ h ≤ m + 1, we have

q′0 ·
′ b

(α′)
2,h = e

(α′)
2

+
+ d(α′)∗c(α′) /∈ F ′.

Since B has the F -property, also the preamble states q′0◦
′b

(α′)
2,h , for 1 ≤ h ≤ m+1

are not in F ′. Notice that the state q′0 ◦
′ b

(α′)
2,h is almost-equivalent to the state

(q0 ◦ b
(α′)
2,h) = pj,h of A, for 1 ≤ h ≤ m + 1. It follows that for each state pj,h

from Pre(Aϕ) with 1 ≤ h ≤ m + 1, there are two different states q′0 ◦ b
(α)
1,h

and q′0 ◦ b
(α′)
2,h in Pre(B). But with these m + 1 additional states, the preamble

23

of B is definitely larger than the preamble of Aϕ, since for each of the m clauses
at most one state can be saved. This is a contradiction, so every variable gets
assigned exactly one truth value.

From the definition of ξ it clearly follows that ξ satisfies each clause ϕα,
for α ∈ {α1, α2, . . . , αk}. We have shown that if there is a k′-state biautoma-
ton B with Aϕ ∼ B, then there is a truth assignment ξ that satisfies k clauses
of ϕ. ⊓⊔

It remains to prove the second claim.

Proof (of Claim (2)). Let ξ : X → {0, 1} be a truth assignment that satisfies the
clauses ϕα1

, ϕα2
, . . . , ϕαk

. We construct the biautomaton B from automaton Aϕ

as follows. For all variables xj ∈ X with ξ(xj) = 1, we make the states pj,h

accepting, for 1 ≤ h ≤ m + 1. Note that pj,h is only reachable from q0 by
reading a symbol from Bxj ,h. In order to keep the F -property, we also make
the states q0 · b accepting, for all b ∈ Bxj ,h. Since all these states are in the
preamble, we still have an almost-equivalent biautomaton.

Now let i ∈ {α1, α2, . . . , αk} and consider the clause ϕi = (ℓi1 ∨ ℓi2). If ϕi

is satisfied by the first literal ℓi1 , then we can merge state q
′(i)
1 to state q

(i)
1

by re-routing all forward transitions from q0 on symbols b
(i)
1,h to state q

(i)
1 , and

re-routing the backward transition from q0 on symbol c(i) to state s1. Now the

state q
′(i)
1 is not reachable anymore and can be removed. If the clause ϕi is not

satisfied by literal ℓi1 , then it must be satisfied by the second literal ℓi2 . In this

case, we can re-route all forward transitions from q0 on symbols b
(i)
2,h to state q

(i)
2 ,

and re-route the backward transition from q0 on symbol c(i) to state s2, so that

state q
′(i)
2 can be removed. Note that the resulting biautomaton still has the

⋄-property and the F -property. Further, it is almost-equivalent to Aϕ, since we
only re-routed transitions starting from a preamble state, and the new target
states for these transitions are almost-equivalent to the original target states.
In this way we can remove k states from Aϕ, and obtain an almost-equivalent
biautomaton A′ that has k′ = |Q| − k states. We have shown that if k clauses
of ϕ can be satisfied, then k states of Aϕ can be saved. This concludes the proof
of Claim (2). ⊓⊔

The theorem now follows from Claims (1) and (2). ⊓⊔

Containment of the hyper-minimization problem in NP can be seen by an
easy guess-and-check-algorithm, therefore, we obtain the following theorem.

Theorem 15 (DBiA Hyper-Minimization Problem). The problem of de-
ciding for a given biautomaton A, and an integer n, whether there exists an
n-state biautomaton B, with A ∼ B, is NP-complete.

Proof. We know from Theorem 14 that the problem is NP-hard, hence it remains
to prove containment in NP. Given as an instance of the problem a DBiA A
and an integer n, a non-deterministic Turing machine first guesses an n-state
DBiA B and writes it on its working tape. Checking whether A and B are
almost-equivalent can be done by testing whether the contained DFAs Afwd

24

and Bfwd are almost-equivalent. It is shown in [6] that this question for DFAs can
be decided in NL. Therefore, the hyper-minimization problem for biautomata
can be decided by a non-deterministic Turing machine in polynomial time. ⊓⊔

In [6] another form of equivalence of languages and automata was consid-
ered, namely E-equivalence. Given an error language E ⊆ Σ∗, two languages L
and L′ over Σ are E-equivalent, for short L ∼E L′, if L△L′ ⊆ E, and two
automata A and A′ are E-equivalent, if L(A) ∼E L(A′). It is shown in [6]
that the following E-minimization problem for DFAs is already NP-complete:
given two DFAs A and AE , and an integer n, decide whether there exists an
n-state DFA B, with A ∼E B, for E = L(AE). That result cannot directly
be used to obtain a similar result for biautomata, but one can show that the
E-minimization problem for biautomata is NP-complete, too. Concerning the
definition of the E-minimization problem for biautomata, one could consider
the following two possibilities for specifying the error set E: either by a deter-
ministic finite automaton, or by a biautomaton. Both variants turn out to be
NP-complete, as the following result shows.

Theorem 16 (DBiA E-Minimization Problem). The problem of decid-
ing for a given biautomaton A, a deterministic finite automaton AE, and an
integer n, whether there exists an n-state biautomaton B, such that A ∼E B,
for E = L(AE), is NP-complete. This also holds, if AE is a biautomaton instead
of a finite automaton.

Proof (Sketch). We can use the fact that almost-equivalence is a special case
of E-equivalence: if two languages L and L′ are accepted by DFAs having n
and n′ states, respectively, and if L ∼ L′, then L ∼E L′, for E = Σ≤max(n,n′).
With this, NP-hardness of the E-minimization problem for biautomata follows
from Theorem 14. The NP upper bound can be seen by an easy guess-and-check
algorithm. ⊓⊔

6 Conclusions

We compared structural and computational complexity results for deterministic
finite automata to similar results for biautomata. These two different automaton
models behave very similar in many aspects, but we found a notable difference
in the complexity of the hyper-minimization problem for these machines: for
DFAs this problem is known to be NL-complete [6], while we proved in this
paper, that it is NP-complete for biautomata.

References

1. Arnold, A., Dicky, A., Nivat, M.: A note about minimal non-deterministic automata.
Bull. EATCS 47 (1992) 166–169

2. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite state
automata. RAIRO–Informatique théorique et Applications / Theoretical Informatics and
Applications 43(1) (2009) 69–94

3. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11 (1964) 481–494

25

4. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems. Inform.
Comput. 97 (1992) 1–22

5. Gawrychowski, P., Jeż, A.: Hyper-minimization made efficient. In Královic, R., Niwinski,
D., eds.: Proceedings of the 34th Conference on Mathematical Foundations of Computer
Science. Number 5734 in LNCS, Novy Smokovec, High Tatras, Slovakia, Springer (2011)
356–368

6. Holzer, M., Jakobi, S.: From equivalence to almost-equivalence, and beyond: Minimizing
automata with errors. Internat. J. Found. Comput. Sci. 24(7) (2013) 1083–1134

7. Holzer, M., Jakobi, S.: Minimization and characterizations for biautomata. In Bensch,
S., Drewes, F., Freund, R., Otto, F., eds.: Proceedings of the 5th International Workshop
on Non-Classical Models of Automata and Applications. Number 294 in books@ocg.at,
Ume̊a, Sweden, Österreichische Computer Gesellschaft (2013) 179–193

8. Holzer, M., Jakobi, S.: Nondeterministic biautomata and their descriptional complex-
ity. In Jürgensen, H., Reis, R., eds.: Proceedings of the 15th International Workshop on
Descriptional Complexity of Formal Systems. Number 8031 in LNCS, London, Ontario,
Canada, Springer (2013) 112–123

9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata—a
survey. Inform. Comput. 209(3) (2011) 456–470

10. Holzer, M., Maletti, A.: An n log n algorithm for hyper-minimizing a (minimized) deter-
ministic automaton. Theoret. Comput. Sci. 411(38–39) (2010) 3404–3413

11. Hopcroft, J.: An n log n algorithm for minimizing the state in a finite automaton. In
Kohavi, Z., ed.: The Theory of Machines and Computations. Academic Press, New York
(1971) 189–196

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley (1979)

13. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J. Com-
put. 17(5) (1988) 935–938

14. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. In: Proceedings of the
International Colloquim on Automata, Languages, and Programming. Number 510 in
LNCS, Springer (1991) 629–640

15. Jirásková, G., Kĺıma, O.: Descriptional complexity of biautomata. In Kutrib, M., Mor-
eira, N., Reis, R., eds.: Proceedings of the 14th International Workshop Descriptional
Complexity of Formal Systems. Number 7386 in LNCS, Braga, Portugal, Springer (2012)
196–208

16. Jones, N.: Space-bounded reducibility among combinatorial problems. J. Comput. System
Sci. 11 (1975) 68–85

17. Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic log
space. Math. Systems Theory 10 (1976) 1–17

18. Kĺıma, O., Polák, L.: Biautomata for k-piecewise testable languages. In Yen, H.C., Ibarra,
O.H., eds.: Proceedings of the 16th International Conference Developments in Language
Theory. Number 7410 in LNCS, Taipei, Taiwan, Springer (2012) 344–355

19. Kĺıma, O., Polák, L.: On biautomata. RAIRO–Informatique théorique et Applications /
Theoretical Informatics and Applications 46(4) (2012) 573–592

20. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffienct proofs
of existence. J. Comput. System Sci. 48(3) (1994) 498–532

21. Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta
Inform. 26(3) (1988) 279–284

26

Institut für Informatik

Justus-Liebig-Universität Giessen

Arndtstr. 2, 35392 Giessen, Germany

Recent Reports

(Further reports are available at www.informatik.uni-giessen.de.)

J. Kari, M. Kutrib, A. Malcher (Eds.), 19th International Workshop on Cellular Automata and
Discrete Complex Systems AUTOMATA 2013 Exploratory Papers, Report 1302, Septem-
ber 2013.

M. Holzer, S. Jakobi, Minimization, Characterizations, and Nondeterminism for Biautomata,
Report 1301, April 2013.

A. Malcher, K. Meckel, C. Mereghetti, B. Palano, Descriptional Complexity of Pushdown Store
Languages, Report 1203, May 2012.

M. Holzer, S. Jakobi, On the Complexity of Rolling Block and Alice Mazes, Report 1202,
March 2012.

M. Holzer, S. Jakobi, Grid Graphs with Diagonal Edges and the Complexity of Xmas Mazes,
Report 1201, January 2012.

H. Gruber, S. Gulan, Simplifying Regular Expressions: A Quantitative Perspective, Re-
port 0904, August 2009.

M. Kutrib, A. Malcher, Cellular Automata with Sparse Communication, Report 0903, May
2009.

M. Holzer, A. Maletti, An n log n Algorithm for Hyper-Minimizing States in a (Minimized)
Deterministic Automaton, Report 0902, April 2009.

H. Gruber, M. Holzer, Tight Bounds on the Descriptional Complexity of Regular Expressions,
Report 0901, February 2009.

M. Holzer, M. Kutrib, and A. Malcher (Eds.), 18. Theorietag Automaten und Formale
Sprachen, Report 0801, September 2008.

M. Holzer, M. Kutrib, Flip-Pushdown Automata: Nondeterminism is Better than Determinism,
Report 0301, February 2003

M. Holzer, M. Kutrib, Flip-Pushdown Automata: k + 1 Pushdown Reversals are Better Than
k, Report 0206, November 2002

M. Holzer, M. Kutrib, Nondeterministic Descriptional Complexity of Regular Languages, Re-
port 0205, September 2002

H. Bordihn, M. Holzer, M. Kutrib, Economy of Description for Basic Constructions on Ra-
tional Transductions, Report 0204, July 2002

M. Kutrib, J.-T. Löwe, String Transformation for n-dimensional Image Compression, Re-
port 0203, May 2002

A. Klein, M. Kutrib, Grammars with Scattered Nonterminals, Report 0202, February 2002

A. Klein, M. Kutrib, Self-Assembling Finite Automata, Report 0201, January 2002

M. Holzer, M. Kutrib, Unary Language Operations and its Nondeterministic State Complexity,
Report 0107, November 2001

A. Klein, M. Kutrib, Fast One-Way Cellular Automata, Report 0106, September 2001

M. Holzer, M. Kutrib, Improving Raster Image Run-Length Encoding Using Data Order, Re-
port 0105, July 2001

M. Kutrib, Refining Nondeterminism Below Linear-Time, Report 0104, June 2001

M. Holzer, M. Kutrib, State Complexity of Basic Operations on Nondeterministic Finite Au-
tomata, Report 0103, April 2001

M. Kutrib, J.-T. Löwe, Massively Parallel Fault Tolerant Computations on Syntactical Pat-
terns, Report 0102, March 2001

A. Klein, M. Kutrib, A Time Hierarchy for Bounded One-Way Cellular Automata, Re-
port 0101, January 2001

M. Kutrib, Below Linear-Time: Dimensions versus Time, Report 0005, November 2000

