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1 Introduction

Puzzles where the player moves tokens over the playing board according to
specific rules, trying to reach some target configuration, can be very challenging
and enjoy great popularity. The number of different variants and rules of those
puzzles is legion. In some puzzles, the playing board has a labeling that somehow
prescribes which moves can be made. In other puzzles with an unlabeled board,
the legal moves only depend on the tokens themselves. An example for the latter
kind of puzzles are rolling block puzzles, where the player has to roll blocks of
size ℓ × 1 × 1 over the board, and the goal is to move a designated block to a
target position. Here the possible moves are determined by the dimensions of
the blocks. By labeling some fields of the board as “forbidden,” mazes can be
created, through whose corridors the blocks have to be rolled. A slightly different
variant are colour mazes, where the fields of playing board are coloured, and
the block may only come to lie on a uni-coloured area. A precursor to rolling
block puzzles are the rolling cube puzzles, which were popularized by an article
of Gardner in [6–8]. There, instead of arbitrary blocks, a single die, i.e., a cube
with the (standard) faces , , , , , and , is used for rolling over the
board, such that the top face of the die has to be the same as the label of
the square of the board, assuming an appropriate labeling of the board. It
was shown in [4], that these mazes can be solved efficiently in deterministic
polynomial time.

A different kind of puzzles with labeled playing boards, that use simple
tokens instead of particularly shaped blocks, are Alice mazes. Here each square
of the board is labeled with arrows that designate in which direction a token
on that square may be moved. Additionally, some squares may also change the
speed of the tokens.

Rolling blocks and moving tokens is not that easy, as it looks first, because
several blocks or tokens may prevent certain moves, since they may block each
other’s movements. I fact a lot of such problems turn out to be extremely com-
plicated from a complexity theoretical point of view, namely PSPACE-complete,
if the number of tokens is not bounded. Here we investigate the computational
complexity of some of the above mentioned puzzles, namely rolling block mazes,
from which also results on colour mazes can be concluded, and Alice mazes.
Detailed definitions of those games are given in the appropriate sections. We
show that if the number of blocks or tokens is not bounded, these problems
are PSPACE-complete. While containment in PSPACE is easy, the hardness is
shown with the help of the recently introduced uniform framework for modeling
games, the nondeterministic constraint logic (NCL) of Demaine and Hearn [5].
It is worth mentioning that rolling block mazes were considered before in the
literature. In [2] the PSPACE-completeness of rolling block mazes was shown,
even if the blocks are all of size 2× 1× 1 or 3× 1× 1. In the journal version [3]
of [2], instead of 3 × 1 × 1 blocks, forbidden squares are used. The question
of the complexity with only 2 × 1 × 1 blocks, and without forbidden squares
was left open—see also [9]. As a side result of our construction, we are able to
prove that PSPACE-completeness also holds for this case. This is best possible,
since we also show that under weak constraints rolling block mazes with blocks
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of unit size—these blocks are called cubes—are trivially solvable. Further, we
also consider the cases, where the number of blocks or tokens on the board is
bounded by a constant. Here it shows that these problems are closely related
to variants of graph reachability problems.

The paper is organized as follows: In the next section we introduce the
necessary notations. In Section 3 we turn our attention to rolling block mazes,
where we investigate the complexity of the game for an unbounded and bounded
number of blocks of different sizes. In particular we improve a previous result [2,
3] on the PSPACE-completeness of unbounded rolling block mazes to blocks of
size 2×1×1 only (without forbidden squares). In Section 4 we study Alice mazes,
considering two main variants again, namely whether the number of tokens on
the board is bounded or not. For the bounded case we prove NL-completeness,
while the unbounded case is PSPACE-complete in general again, even without
speed changing fields. The results on rolling block mazes and Alice mazes are
summarized in Tables 1 and 2 in the ultimate section.

2 Definitions

We assume familiarity with the basic concepts of complexity theory [11] such
as the inclusion chain AC

0 ⊂ NC
1 ⊆ L = SL ⊆ NL ⊆ AL = P ⊆ NP ⊆ PSPACE.

Here AC
0 and NC

1 refer to the sets of problems accepted by polynomial size
uniform families of Boolean {AND, OR, NOT}-circuits having, respectively, un-
bounded fan-in and constant depth, and bounded fan-in and logarithmic depth.
L is the set of problems accepted by deterministic logarithmic-space bounded
Turing machines. SL and NL can be taken to be the sets of problems logspace-
reducible to the undirected graph reachability (UGR) and to the directed graph
reachability (GR) problems respectively and AL is the set of problems accepted
by alternating logspace bounded Turing machines. P (NP, respectively) is the
set of problems accepted by deterministic (nondeterministic, respectively) poly-
nomial time bounded Turing machines and PSPACE is the set of problems ac-
cepted by deterministic or nondeterministic polynomial space bounded Turing
machines. All the relationships depicted in the inclusion chain have been known
for a quarter of a century, except for L = SL, shown in [12].

Two other particularly relevant problems are undirected grid graph reach-
ability (UGGR) and constraint logic (CL). The former problem is defined as
follows: given an n × n grid of nodes such that an edge only connects imme-
diate vertical or horizontal neighbors, is there a path from node s to node t,
where s and t are designated nodes from the grid? UGGR is NC

1-hard under
AC

0 reducibility, it belongs to L, yet it is not known to be L-hard [1]. The lat-
ter problem, i.e., constraint logic or more precisely nondeterministic constraint
logic (NCL), is defined as follows: given a constraint graph G and an edge e

of G, is there a sequence of legal moves on G that eventually reverses e? Here a
constraint graph is a directed graph with edge weights from the set {1, 2} and
where each vertex has a non-negative minimum inflow. Here the inflow of a ver-
tex is the sum of the weight of inward-directed edges. A legal configuration of
a constraint graph has an inflow of at least the minimum inflow at each vertex
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(these are the constraints that have to be satisfied), and a legal move on a con-
straint graph is the reversal of a single edge that results in a legal configuration.
NCL is PSPACE-complete, even for planar constraint graphs built by AND- and
OR-vertices only [5]—see Figure 1 for AND- and OR-vertices. Thus in order

C

A B

C

A B

Fig. 1. Nondeterministic constraint logic (NCL): red edges have weight 1, blue edges have
weight 2, and vertices have minimum in-flow constraint of 2. (Left:) AND-vertex: edge C may
be directed outward if and only if both edges A and B are directed inward. (Right:) OR-vertex:
edge C may be directed outward if and only if either edge A or edge B is directed inward.

to prove PSPACE-hardness it suffices to construct AND- and OR-gadgets that
simulate the behaviour of the corresponding vertices and wiring capabilities.

3 Rolling Block Mazes

A rolling block maze is played on an n×n rectangular board with an arbitrary
number of blocks initially placed on the board (up-right or lying). The blocks
are of sizes ℓ× 1× 1. In particular, a 1× 1× 1 block is also called a cube. Some
of the board cells (squares) may be marked as forbidden territory—instead of
forbidden territories one can also use non-movable unit cubes on the appropriate
board squares. The objective of the game is to roll a distinguished block from
a given starting position s to a target position t without rolling off the grid
(here the forbidden squares count as off the grid). It is not required to visit all
squares of the board. A rolling block maze and its solution is shown in Figure 2.
There the cubes on the border of the maze are non-movable and only used to
engrid the rolling block maze; all non-movable blocks are not counted as blocks
in the forthcoming.

3.1 Rolling Block Mazes with an Unbounded Number of Blocks

We first prove that solving rolling block mazes is PSPACE-complete, if the
number of blocks is not bounded by a constant. This result improves a recent
result [2, 3] on the PSPACE-completeness of rolling block mazes by using blocks
of size 2×1×1 only and disallowing forbidden squares. In [2] forbidden squares
can be simulated by larger blocks of size 3 × 1 × 1.

Theorem 1. Solving a rolling block maze with an unbounded number of blocks

is PSPACE-complete, even if all blocks are of size 2 × 1 × 1. The result holds

true even without forbidden squares.

Proof. Given a rolling block maze, a polynomial space bounded Turing machine
can store the configuration and may simulate the sequence of movements of
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Fig. 2. Rolling block maze of size 7×7 with single block (green) of size 2 × 1 × 1, not counting
the non-movable cubes (red). The leftmost image in the first row shows the initial configuration
of the maze in topview, and the others are shown three-dimensional. The solution moving the
single 2× 1× 1 block from s to t (starting and ending in an up-right position) down from left
to right and top to bottom with the following movements: down, down, right, right, up, right,
up, left, down, right, up, left, left, down, right, down, down, and left. This example comes
from www.puzzlebeast.com/rollingblock.
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the blocks by simply guessing the sequence step by step. Since determinism
and nondeterminism coincides for polynomial space by Savitch’s theorem [13],
the containment within PSPACE follows. It remains to show PSPACE-hardness,
for which we reduce NCL to rolling block mazes with an unbounded number
of blocks. Therefore, we construct submazes depicted in Figure 3, simulating
AND- and OR-vertices and show how to properly connect these.

In all cases, the red blocks cannot be moved at all, except for the two blocks
left and right of the horizontal lying block in the middle of the AND-submaze
(left-hand side of Figure 3) and for the four blocks above and under the four
center squares in the connection-submaze (Figure 4). If in the AND-submaze,
the middle block gets rolled downwards, one of the two neighbouring red blocks
may be toppled onto this two free squares, freeing exactly one square, which
cannot be used to move any other block. We can only move the red block back
to its initial position. Similarly, two neighbouring free squares in the connection-
submaze gives the opportunity to tip a standing red block from above or from
below onto this place, which again only leaves one free square, that cannot be
used to move any other block. Thus, these standing red blocks can be seen just
as forbidden squares.

The AND-submaze is shown on the left-hand side of Figure 3. The block
standing on exit C may be rolled downwards into the submaze, which means
that the corresponding edge gets turned outward, if and only if both lying
blocks at A and B are rolled out of the submaze, meaning the corresponding
edges being turned inward. In the OR-submaze, shown on the right-hand side
of Figure 3, the lying block at exit C may be rolled further into the submaze,
if and only if at least one of the blocks near A and B are rolled outwards,
occupying the corresponding exit. The other cases behave symmetrically. So
these submazes behave like NCL AND- and OR-vertices. Note that all inward-
facing edges, that is, all exits where a block reaches out of the submaze, occupy
exactly the first square outside the submaze.

A B

C

A B

C

A B

C

A B

C

A B

C

Fig. 3. (Left:) Rolling bock maze subgame simulating an AND-vertex. (Right:) Rolling block
maze simulating an OR-vertex. If a label A, B, or C is occupied by some block, then the
corresponding edge faces inward, otherwise, the edge faces outward. So edge C is facing inward
in the upper and gets turned outward in the lower row.
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The mazes that connect these AND- and OR-vertex-mazes are shown in
Figure 4. The labeled squares X and Y correspond to some labeled squares A,
B, or C of the neighbouring vertex-submaze. These connection-submazes also
ensure, that no block may leave its corresponding submaze for more than one
roll, since the vertical block in the middle can only be moved by one step. All
submazes have the size 6 × 6 and so can be rotated and arranged easily into a
grid. Connecting rotated vertex-mazes may cause offsets on the corresponding
exits, which can be adjusted by using an offset-connector, as shown on the
right-hand side of Figure 4, which of course can be mirrored, if needed. This
completes the proof of PSPACE-completeness. ⊓⊔

X Y X Y X

Y

Fig. 4. Connection-submazes: (Left:) Y is free to take a block from the right neighbour vertex
maze and the block on X prevents the left neighbour vertex maze from rolling a block outwards.
Thus, the corresponding edge faces rightwards. (Middle:) This positioning describes a leftward
facing edge. (Right:) An offset-connection.

A variant of rolling block mazes with some additional rules are colour mazes.
A colour maze is an n×n grid where the cells are coloured by red or blue. There
the challenge is that the blocks must be moved from the starting positions to
the target positions without rolling off the grid and in addition, the block must
always lie entirely within one colour zone. An example of a colour maze and
its 14 step solution is shown in Figure 5—here the block is of size 2 × 1 × 1
and it must start and end in the vertical position. Of course, the rolling block
mazes from above can be seen as uni-colour colour mazes and we immediately
gain the following:

Corollary 2. Solving a colour maze with an unbounded number of blocks is

PSPACE-complete, even if all blocks are of size 2 × 1 × 1. ⊓⊔

Of course, in colour mazes with block size 1 × 1 × 1, the colour does not
matter—these mazes are just rolling block mazes. Furthermore, rolling block
mazes with block size 1×1×1 can also be seen as sliding block puzzles with 1×1
sized blocks. The next theorem shows that the PSPACE-completeness result for
2 × 1 × 1 blocks is best possible in the case with no forbidden squares.

Theorem 3. Solving a rolling block maze without forbidden squares and with

an unbounded number of cubes, i.e., blocks of size 1 × 1 × 1, is trivial.

Proof. If all squares are filled with cubes, the maze is unsolvable since no block
can move. Thus assume that there is at least one square, where no cube resides
on. We call a square not holding a cube a hole. In order to roll an arbitrary
cube to either direction we do as follows: if a hole is in the chosen direction
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Fig. 5. Colour maze of size 5× 5 and its solution shown from left to right and top to bottom
with the following movement of the 2 × 1 × 1 block: left, up, right, up, left, left, down, right,
up, left, down, right, right, and up. Note that the block is not displayed in 3D, in effect one
sees only its shadow (vertical at s and t). This example comes from www.clickmazes.com/

roll/ixroll.htm.

on the neighbouring square, we simply roll the cube in the desired direction.
Otherwise, we first must bring a hole to the appropriate neighbouring position
by not changing the position of the cube under consideration, and then roll
the cube to the designated direction. Since there are no forbidden squares we
can always perform this task. Bringing some hole to a distinguished position,
excluding one square position of the maze, is easy because one has to search
for a path starting at the hole, excluding the mentioned square position, and
ending at the distinguished target, such that every square, except the first one,
contains a cube. It is easy to see that such a path always exists. Thus, one
can move a distinguished block from s to t by repeatedly applying the above
strategy. This shows that solving a rolling block maze without forbidden squares
and with an unbounded number of cubes is trivially solvable. ⊓⊔

In the proof of the previous theorem it was essential that no forbidden
squares exist. In case they do, one can show that solving a rolling block maze
with forbidden squares and an unbounded number of cubes (a single cube,
respectively) is at least as hard as UGGR under AC

0 reducibility. The straight
forward construction is left to the interested reader.

3.2 Rolling Block Mazes with a Bounded Number of Blocks

In rolling block mazes with a bounded number of blocks it turns out that
forbidden squares are very important for the computational complexity, since
without these squares the problem under consideration becomes trivial, not
only for the case that only cubes are rolled, but in general.
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Theorem 4. Solving a rolling block maze without forbidden squares and a

bounded number of blocks is trivial.

Proof. Let k refer to the number of blocks and assume the largest block to be
of size ℓ× 1× 1. Let n = 2 · k · ℓ. We claim that every rolling block maze of size
at least n×n is trivially solvable. Since the number of rolling block mazes that
are smaller in size is finite, we can make a precompiled list, that contains the
answer to whether the given rolling block maze is solvable or not. It remains
to prove the claim above. The case k = 1 can easily be verified, thus let k ≥ 2.
Let an n × n rolling block maze be given and without loss of generality we
assume that the target position is to the lower right—if not, we rotate the maze
accordingly. The solution runs in three phases: (1) First all blocks are moved
into the lower right corner of size k · ℓ × k · ℓ, (2) then all blocks are arranged
side by side in the upper left corner and (3) finally, the target block is moved
onto its target position.

First we scan the maze from right to left until we see a block, we have not
moved yet, choosing the topmost, whenever two or more blocks are encountered
simultaneously. We roll this block rightwards as far as possible. Note that the
leftmost part of the block, independent of its orientation, will occupy a square
at a distance of at most ℓ squares from the next obstacle (wall or block) on the
right. Thus, after moving all k blocks rightwards as far as possible, they occupy
at most k · ℓ columns from the right. Then we move all blocks downwards as far
as possible in the same manner. Except for the lower right quarter of size k · ℓ,
the maze is now free of blocks.

Then we take the leftmost block from the lower right quarter of the maze,
choosing the topmost if there are more than one, and roll it to the left as far as
possible. Since the lower left quarter is free of blocks, the block comes to lie or
stands in the leftmost ℓ columns. Then we change its orientation, so that it lies
vertically. If the block is standing, we just have to topple it upwards, whereas a
horizontal lying block has to be set upright first. Since k ≥ 2, we have at least ℓ

free squares above the block even if a block already lies in the top ℓ rows of this
column, so this can be done. If this is the ith block we moved in this phase,
we now roll it into the ith column and there, roll it upwards as far as possible.
It will then stand or lie in the top ℓ rows of the ith column. This is done until
all k blocks are arranged side by side in the first k columns and the upper ℓ

rows of the maze.
Finally, we can now easily move the target block to its target position on

the lower right quarter of the maze. Let the target square be in column x, line y

and let ℓ0 ≤ ℓ be the length of the target block. We first roll the target block
downwards until it lies vertically and has free space to its left and right, and
then roll it rightwards or leftwards into a column c such that x− c is a multiple
of ℓ0 + 1. Then we roll it down (it now stands upright) and left (or right, if
we are too close to the leftmost wall), so that the block lies horizontally in
columns c − ℓ0 to c − 1. Now we can roll it downwards into the yth line and
then roll it rightwards onto its target position. ⊓⊔

Thus, in the forthcoming we only consider rolling block mazes with forbidden
squares.
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Theorem 5. Solving a rolling block maze with a constant number of blocks can

be done in deterministic logspace.

Proof. Given a rolling block maze with a constant number k of blocks. Then
the number of configurations in the rolling block maze game is polynomially
bounded by the number of grid cells to the power of k times the possible orien-
tations of the blocks. It is easy to see that the construction of the configuration
graph can be done in deterministic logspace. Moreover, since every move in the
game can be undone, the edge relation of the configuration graph is symmetric
and thus it is an undirected graph. Since UGR can be solved in deterministic
logspace, the stated claim follows. ⊓⊔

In case we consider rolling block mazes with a single cube the problem is
trivially equivalent to UGGR, because the labyrinth is an undirected grid graph
itself and the single cube mimics the searching of the maze. Thus we can state
the following result:

Theorem 6. Solving a rolling block maze with a single cube is equivalent to

UGGR under AC
0 reducibility. ⊓⊔

If the block size is larger, the complexity slightly increases to UGR equiva-
lence and thus in turn to L-completeness.

Theorem 7. Solving a rolling block maze with a bounded number of blocks is

L-complete, even for a single block of size 2 × 1 × 1.

Proof. For a constant number of blocks, there is only a polynomial number of
game configurations, inducing a graph by the legal move relation. This graph is
undirected since every move can immediately be undone. Thus, an appropriate
UGR question solves the rolling block maze, which proves containment within L

by [12]. For L-hardness, we reduce the reachability problem for undirected grid
graphs with diagonal edges to rolling block mazes with forbidden squares and a
single block of size 2× 1× 1. Since it is shown in [10] that this UGGR problem
with diagonal edges is AC

0 equivalent to UGR, which in turn is L-complete, the
result follows.

Given a UGGR instance with X-crossings G of size n × n, we construct a
rolling block maze G′ as follows: Assume line-column coordinates for the vertices
in G. Then G′ has size 9n × 9n and at first, we mark all squares as forbidden.
For each vertex (i, j) in G, we free the square (9i, 9j) in G′. Let s and t be the
starting and target vertices of G, then the movable 2 × 1 × 1 block is placed
upright on 9s and has to be rolled onto 9t facing upright. For each horizontal
edge ((i, j), (i, j + 1)) in G we free the squares (9i, 9j + x), for 1 ≤ x ≤ 8,
forming a lane between the corresponding vertex-squares of length 8. Here the
block can be rolled exactly six times, resulting in an up-right orientation on the
next vertex-square. For vertical edges ((i, j), (i + 1, j)) we proceed analogously,
freeing the squares (9i + x, 9j), for all 1 ≤ x ≤ 8. The submaze of size 10 × 10
for the X-crossing and the paths for the block are depicted in Figure 6.

Note that the block always reaches the crossing center in a lying position,
so it cannot turn off its way. Although the block could leave this submaze in

10



Fig. 6. The X-crossing submaze: Red squares are forbidden squares, green fields show the
rolling path of the block.

a “wrong” way, e.g., lying and not standing on the lower right vertex-square,
it cannot enter other X-crossing submazes in any other than the intended way
and even cannot take bends from vertical to horizontal edges. Thus, the block
can be rolled from its initial to the target position if and only if there is a path
from s to t in the UGGR instance with X-crossings G. ⊓⊔

A very similar construction proves L-hardness for colour mazes. Here we
cannot use forbidden squares, but a grid colouring as shown in Figure 7 has
about the same effect on a non-cube block as forbidden squares do. The figure
shows a colour maze that simulates an X-crossing. It should be clear that by
using this submaze, one could design an appropriate colour maze from an UGGR
instance with X-crossings.

Corollary 8. Solving a colour maze with a bounded number of blocks is L-

complete, even if all blocks are of size 2 × 1 × 1.

Proof. For containment in L, the same argumentation as for rolling block mazes
applies to colour mazes, too. For L-hardness, UGGR with X-crossings can be
reduced to rolling block mazes in a very similar way as for rolling block mazes.
Therefore, each vertex (i, j) in the UGGR instance is transformed to a blue
square at position (12i, 12j) in the to be constructed colour maze. Horizontal
and vertical edges are represented as a path of alternating 2 × 1 sized red and
1 × 1 sized blue areas between the corresponding two blue vertex-squares. An
appropriate submaze for simulating an X-crossing is depicted in Figure 7.

Fig. 7. A colour maze subgame simulating an X-crossing.

11



As also seen there, the remaining colouring of the maze is an alternation of
red and blue squares, such that the vertex-squares match this colouring. Since
all paths, the block should roll along, are embedded by this alternating colour
structure, the block cannot leave the path from an upright position, for it needs
two uni-coloured squares to lie on. From a lying position, the block could leave
the path onto a “forbidden” square, but from there on, it only can be rolled
back onto the path. ⊓⊔

4 Alice Mazes

An Alice1 maze is played on an m × n rectangular board where each square is
labeled with a set of vertical, horizontal, and diagonal arrows, further a square
can be marked as speed increasing (green arrows) or speed decreasing (red
arrows). An arbitrary number of tokens is initially placed on the board, each
with its own initial speed. The goal is to move a distinguished token from its
starting position s to some target position t. A token can leave a square only in
one of the directions designated by the arrows on the square, and it moves the
number of squares according to the token’s speed. All squares over which the
token moves must be free of other tokens. If a token finishes its movement on
a speed increasing or decreasing square, its speed is increased or, respectively,
decreased by 1. An example maze with its solution is shown in Figure 8.

4.1 Alice Mazes with an Unbounded Number of Tokens

As in the case of rolling block mazes we first show PSPACE-completeness for
Alice mazes with an unbounded number of tokens, where we use the NCL
framework again.

Theorem 9. Solving an Alice maze with an unbounded number of tokens is

PSPACE-complete.

Proof. For Alice mazes, a similar argumentation as in the case of rolling block
mazes applies. The problem is in PSPACE, because it can be solved nondeter-
ministically using polynomial space. For proving PSPACE-hardness, we reduce
NCL to Alice mazes with an unbounded number of tokens, by constructing
submazes simulating AND- and OR-vertices and their connections. We use the
notation (X1 ← X2 ← X3 ← . . . ← Xk) to describe the sequence of moves
where a token lying on square X2 is moved onto square X1, then the token
on X3 is moved onto square X2, and so on.

We start by describing the AND-submaze. Figure 9 shows an Alice maze
corresponding to an AND-vertex, where the “blue edge” on the left is faced
inward (because there is a token on A6) and the “red edges” on the right are

1 On his web site www.logicmazes.com, Robert Abbott explains the name of this game as
follows: “These are called ‘Alice’ mazes because they recall the scene in Alice in Wonderland
where Alice eats a piece of cake with the sign ‘Eat Me’ and grows larger, then she drinks
from a bottle marked ‘Drink Me’ and becomes smaller. These mazes won’t make you larger
or smaller, but the distance you travel in a move will get larger or smaller.”
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Fig. 8. An Alice maze with speed increasing (green) and speed decreasing (red) squares. The
maze can be solved by moving the token, which has an initial speed of 1, from square s to
square t, by taking the following moves: right, up, right, down, down, left, down, left, up,
right, down, left, up, right, down, left, up, right, down, down, and down. This example is the
fourth maze from www.logicmazes.com/alice.html.
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Fig. 9. Alice maze simulating an AND-vertex. The squares A6, B5, and C6 correspond to the
“blue” edge, which is facing inward because there is a token on A6. Squares O1, N2, and M1,
and squares O4, N5, and M4 correspond to the “red edges,” which are facing outward because
there are no tokens on O1 and O4.

faced outward (because O1 and O4 are free). To reverse edges in this AND-
submaze, one can first take the following moves to free I2 and H3: (O1 ←
M1 ← L2 ← K2 ← J1 ← I1 ← I2) and (O4 ← M4 ← L5 ← K5 ← J4 ←
I4 ← I3 ← H3). The resulting configuration is depicted in Figure 10. Since now
all three squares O1, O4, and A6 carry a token, that configuration corresponds
to an AND-vertex where all three edges are turned inward.

With I2 and H3 being free, the token on G4 can now go to I2 and the
left edge can be reversed as follows: (I2 ← G4 ← G5 ← F6 ← E6 ← C6 ←
B5 ← A6). This results in the configuration shown in Figure 11. Note, that all
tokens on the red arrows and the token on I2 have speed 2 and the others have
speed 1. In this configuration, A6 is free, which means that the “blue edge” on
the left is turned outward, and O1 and O4 are occupied, which means that the
corresponding “red edges” are facing inward. The token on I2 is blocking both
ways from O1 and O4, preventing that any one of the “red edges” is turned
outward unless the “blue edge” at A6 is turned inward again.

To reverse the edges again, first take the following moves to free I2: (H3 ←
H2), (A6 ← C6 ← D5 ← E5 ← E6 ← G4 ← G3 ← G2 ← I2). This results in
the configuration depicted in Figure 12. Now we can free O1 and O2 again by
taking the following moves, resulting in the initial configuration: (I2 ← I3 ←
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Fig. 10. Alice maze simulating an AND-vertex, where all edges are facing inwards.
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Fig. 11. Alice maze simulating an AND-vertex, where the “red edges” face inward (there are
tokens on O1 and O4), and the blue edge is facing outward (A6 is free).

J4 ← K4 ← M4 ← N5 ← O4), (H2 ← I2), and (I2 ← J1 ← K1 ← M1 ←
N2 ← O1).

Next we argue, that we cannot cheat in the following sense: no token can
ever leave its submaze and we cannot reach the situation where A6 and O1
or O4 are free at the same time. First note, that each white and red arrows
directly point at an adjacent gadget field, so that tokens having speed 1 cannot
leave the submaze from these fields. Tokens leaving green arrows (with speed 2)
come to lie on red arrows (slowing them down to speed 1 again) except for the
case where a token leaves G4 for I2. This is the only situation where a token
lies on a white arrow field and has speed 2. But from I2 the token can only
go to G2 where it gets slowed down again. It cannot take the other direction,
because if I2 is occupied by a speed 2 token, then this token must have come
from G4, which means that then G4 and H3 are the only two free fields of the
submaze, in particular, I1 is occupied and thus, blocks the token on I2. So, no
token ever leaves its submaze.

We have already seen that for freeing A6, one must first occupy O1 and O4
and move the token from G4 to I2. As long as this token, which has speed 2, sits
on I2, it blocks both fields J1 and I3, so none of the fields O1 and O4 can bee
freed. In order to free I2 again, we have to clear H2 and G2, but for clearing G2,
we finally have to occupy A6 again. This means, that before directing a “red
edge” (O1 or O4) outward, we must first direct the “blue edge” (O6) inward.
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Fig. 12. Alice maze simulating an AND-vertex, all edges are facing inwards.
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Now we discuss the OR-submaze, shown in Figure 13 in its initial configura-
tion where the left edge is facing inward (A5 is occupied) and both edges on the
right face outward (M1 and M4 are vacant). Since in the whole submaze there
are only two free fields, at most two edges can be directed outward at the same
time. To see that no token can leave the submaze, note that all red and white
arrows directly point to gadget fields and tokens leaving green arrows always
come to lie on a red arrow.

A B C D E F G H I J K L M
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Fig. 13. Alice maze simulating an OR-vertex. The left “blue edge” faces inwards, because
there is a token on A5, the other “blue edges” face outward, because M1 and M4 are vacant.

It can easily been checked, that for freeing A5, one has to move tokens to-
wards M1 or M4. For the remaining situations, suppose A5 has to stay free,
i.e. the left edge needs to face outward. Then one can switch from the config-
urations where M1 is occupied while M4 is free to the state where M1 is free
while M4 is occupied by moving as follows: (M4 ← K4 ← . . . ← G4 ← F4 ←
G3 ← G2 ← . . . ← K1 ← L2 ← M1). The backward sequence is similar.

Finally we explain how the information, if a vertex-submaze’s edge is turned
outward or inward, is propagated to the submaze on the other side of the edge.
Figure 14 shows a connection-submaze that simulates an edge that is directed
to the left, which is represented by C2 being free and I2 being occupied. The
fields I2, J1, K2 correspond to the the fields A6, B5, C6 in an AND-submaze or
to the fields A5, B4, C5 of an OR-submaze respectively. The fields C2, B3, A2
correspond to the fields in the columns M, N, O in an AND-submaze or the
columns K, L, M in an OR-submaze. In particular, this means that tokens on
these fields can only leave towards the connected submazes and cannot go
further into the connection-submaze. Also note, that the other tokens in the
connection-submaze cannot leave it either, so there are three disjoint cycles in
this gadget. The field G1 (E3) is connected to E1 (G3, respectively) by one-
way white arrow fields, each occupied with a token. These paths can be used
for bended and arbitrary long connections.

Suppose, the left vertex-submaze wants the edge to be turned inward, which
means that A2 has to be moved to C2. As long as B2 is occupied, this move is
forbidden, and in order to move B2 we have to shift D2, D3, . . . , H3 and I3. The
token on I3 however, is blocked by the token on I2 which can only be moved
if K2 moves out of the connection-submaze, triggering the vertex-submaze on
the right side of the edge. Then the necessary moves can be done and the
resulting configuration is shown in Figure 15.
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Fig. 14. Alice maze for connecting the vertex-submazes. The three squares A2, B3, and C2
and the three squares K2, J1, and I2 correspond the the three squares simulating an edge in
the AND-vertex and OR-vertex submazes. Since there is a token on I2, and the square C2 is
free, the edge faces towards the vertex-submaze on the right hand side of the connection.

The token on A2 is now able to go to C2 (and in the connected gadget,
another token can now go to A2). Then, moving the token on C3 to B2 results
in the reversed initial configuration. If we move C3 to B2 first, we cannot
move A2 to C2 anymore but can only take cycling moves (C3 ← C1 ← D1 ←
. . . ← H2 ← J2 ← I1 ← I3 ← H3 ← . . . ← D3 ← B2) and so on until we free
B2 so that A2 can move right. ⊓⊔

In the previous proof we used a lot of speed changing fields. One could also
consider Alice mazes without such fields, so the speed of the tokens cannot
change. In such a case one could still define an individual initial speed for each
of the tokens, that stays constant throughout the game. In this setting, we still
can prove PSPACE-hardness, if each token is assigned an initial speed of two,
and we even do not need diagonal arrows for the constructions. Figure 16 shows
how NCL AND- and OR-vertices can be simulated in such an Alice maze, and
mazes that are used to connect these vertex-mazes are shown in Figure 17.
Again, these mazes also ensure, that no token can leave its submaze. Note
that because all tokens have speed two, the edges between the vertex-mazes
basically lie only on even numbered rows and columns. Only the upper right
edge of the AND-vertex maze is shifted onto odd numbered column fields. This
can be corrected using the shifting connection-submaze on the left-hand side of
Figure 17. Thus, we can state the following.

Theorem 10. Solving an Alice maze with an unbounded number of tokens is

PSPACE-complete, even for mazes without any speed changing fields, and with-

out diagonal arrows. ⊓⊔

If we set speed two only for the single distinguished token, that has to be
moved onto the target square, and speed one for all other tokens, the solvability

� � �
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Fig. 15. Alice maze for connecting the vertex-submazes. The right vertex gadget turned its
edge outward by freeing I2 (this is why there is a token “outside” the connection), and the
left vertex gadget may now turn its edge inward by occupying C2.
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Fig. 16. Alice mazes where all tokens have a constant speed of two. The maze on the left
simulates an AND-vertex with the “blue edge” on the left facing inward (because the leftmost
square is occupied by a token) and the “red edges” on the right facing outward (because the
corresponding squares are free of tokens). The right maze simulates an OR-vertex, with its
left edge facing inward and its right edges facing outward.

problem stays at least NP-hard, which is shown in the following. Whether this
problem can also be solved in NP stays open.

Theorem 11. Solving an Alice maze with an unbounded number of tokens and

without any speed changing squares, where at most one token has a speed greater

than 1, is NP-hard.

Proof. We reduce 3-SAT to our problem: given a Boolean formula ϕ in 3-CNF
with k clauses c1, c2, . . . , ck over a set of n variables x1, x2, . . . , xn, we construct
an Alice maze such that a distinguished block can be moved to a target square
if and only if ϕ is satisfiable. The scheme of the constructed maze is shown in
Figure 18. For each variable, we have a horizontal variable gadget consisting
of two variable cycles, which correspond to the two possible truth assignments.
For each clause we have a vertical clause gadget, consisting of three paths
corresponding to the literals of the clause. These literal paths cross each variable
cycle in such a way, that the literal path checks exactly the truth value of its
corresponding literal. The distinguished token in the upper left corner has speed
2 and has to pass through each clause gadget in order to reach the marked
square in the upper right corner. Further, in each variable gadget there is only
one free square, which is used to assign a truth value to the variable, all the
other squares of the variable gadgets are occupied by tokens of speed 1.

We now come to the details of the construction. A variable xi is assigned true

(false), by moving the three tokens leading to the upper (lower, respectively)
variable cycle one step towards the free square labeled xi (cf. Figure 19, A).
This gives one hole that can be shifted through the variable cycle for that truth
assignment, and also makes all tokens on the other variable cycle unmovable.
The token with speed two can pass a clause gadget through any one of the

Fig. 17. Alice mazes that can be used to connect the vertex simulating mazes from Figure 16,
and to prevent tokens from leaving their submazes. In the depicted configurations, the edge
points from left to right, because the leftmost square is occupied, while the rightmost square is
free. The maze on the left is used to rectify the shift of one of the edges from the AND-vertex
simulating maze.
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Fig. 18. Scheme of an Alice maze constructed from a 3-SAT instance. The exact realizations
of a variable setting part A, a literal checking B, and a literal bypass C can be seen in the
example in Figure 19.

three literal paths. A path corresponding to the literal xi (xi) can only pass
the upper (lower, respectively) cycle of the variable gadget xi, if this cycle has
a hole (cf. Figure 19, B): if the token sits on D5, it can only move to D7, if
there is no token on D6, which can be done, if and only if the variable xi is set
true (false, respectively). Similarly, from D7 the token can then move to D9,
by shifting the hole through the cycle to position D8. All other variable cycles
can be bypassed as shown in Figure 19, C. So the token with speed 2 can pass
a clause gadget if and only if there is a truth assignment to the variables that
satisfies the respective clause. Since the token has to pass each clause gadget,
the constructed Alice maze is solvable if and only if the underlying Boolean
formula ϕ is satisfiable. ⊓⊔

The complexity of Alice mazes without any speed changing squares, and
where each token has speed 1 stays open. We only have a PSPACE upper bound
and, as shown in the next section, an NL lower bound.

4.2 Alice Mazes with a Bounded Number of Tokens

Similar to rolling block mazes, if the number of tokens in an Alice maze is
bounded by some constant, the problem becomes easier. In contrast to rolling
blocks, a move in an Alice maze can in general not be undone. This is reflected
in a slightly increased complexity, since an Alice maze can simulate directed
graphs, whereas rolling block mazes only allow simulation of undirected graphs.
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Fig. 19. Alice maze constructed from the formula ϕ = (x ∨ ȳ ∨ z̄). The highlighted parts
implement the variable setting (A), the literal checking (B), and the literal bypass (C).
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Rolling block maze variant
bounded (k blocks) unbounded

Block ℓ × 1 × 1 no obstacles obstacles no obstacles obstacles

· ≡ UGGR, for k = 1
ℓ = 1

trivial UGGR ≤ · ∈ L
trivial

ℓ with ℓ ≥ 2 L-complete, even for k = 1 PSPACE-complete

Table 1. Rolling block maze results for bounded and unbounded number of blocks of size
ℓ × 1 × 1—here ≡ and ≤ refer to AC0 equivalence and AC0reducibility, respectively.

Theorem 12. Solving an Alice maze with a bounded number of blocks is NL-

complete, even without any speed changing squares and for a single block of

speed 1.

Proof. Note that the speed of each token is bounded by the size of the maze,
because faster tokens would not be able to move, and thus have speed 0. This
means that for a constant number of blocks there is only a polynomial number
of game configurations. Then the problem can be solved by an appropriate
graph reachability question on the underlying (directed) configuration graph,
and thus is contained in NL.

For NL-hardness one can easily reduce the reachability problem for (di-
rected) grid graphs with diagonal edges to Alice mazes as described below.
Since in [10] this problem is shown to be NL-complete, the result follows. Let
G = (V, E) be a grid graph with diagonal edges and s, t ∈ V be the starting
and target nodes. For each node v = (i, j) ∈ V we have a square in the Alice
maze. The arrows on the squares correspond in a natural way to the outgoing
edges of v. For example, if there is an edge to node (i, j + 1) to the right, then
the corresponding squares carries an arrow pointing to the right, if there is an
edge to the node (i + 1, j − 1) to the lower left of v, then the squares carries
an arrow to the lower left, and so on. Then a token of speed 1 placed on the
square corresponding to the starting node s can be moved to the target square
corresponding to node t if and only if in G there is a path from s to t. ⊓⊔

5 Conclusions

We have investigated the computational complexity of rolling block mazes and
Alice mazes. It turns out that when the number of blocks in a rolling block or
colour maze, or the number of tokens in an Alice maze is unbounded, then the
problem of solving such a maze becomes PSPACE-complete. Here, NCL turned
out to be a great framework for proving PSPACE-hardness. On the other hand,
if the number of blocks or tokens is bounded by a constant, these problems are
closely related to graph reachability questions. Our findings are summarized in
Tables 1 and 2.

As the reader can see, in both tables the exact complexity of some problems
remains open: in some unbounded cases we have PSPACE upper bounds, but
non matching lower bounds. In particular, for rolling block mazes with 1×1×1
sized blocks we have a lower bound of UGGR-hardness, for Alice mazes without
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Alice maze variant
speed of tokens bounded (k tokens) unbounded

all tokens have speed 1

NL-complete, even for k = 1
all tokens speed 1, except

NP ≤ · ∈ PSPACE
a single token of speed 2
all tokens have speed 2

PSPACE-complete
speed changing

Table 2. Alice maze results for bounded and unbounded number of tokens and different speed
rules—here ≤ refers to AC0 reducibility.

speed changing squares and only tokens of speed 1 we have an NL lower bound,
and Alice mazes without speed changing squares but with at least one token of
initial speed 2 are at least NP-hard.

The rolling block problem for 1×1×1 sized blocks, may seem similar to the
1×1 Rush Hour problem, but a main difference is that the blocks in Rush Hour
puzzles have an orientation, allowing a block only to move either horizontally
or vertically. Also the unbounded Alice maze variant without speed changing
squares, where all tokens have speed 1 is different from 1×1 Rush Hour, because
the orientation in Alice mazes is given on the squares of the board, while in
Rush Hour, the blocks themselves carry the orientation.
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