Events and languages on unary quantum automata

BEATRICE PALANO

MARIA PAOLA BIANCHI

DIPARTIMENTO DI SCIENZE DELL'INFORMAZIONE, VIA COMELICO 39, 20135 MILANO – ITALY UNIVERSITÀ DEGLI STUDI DI MILANO

MARIA.BIANCHI@STUDENTI.UNIMI.IT PALANO@DSI.UNIMI.IT

- Deterministic and quantum automata (Measure-Once and Measure-Many)
- Unary regular languages
- Recognizing unary regular languages with MM-qfa's
- Periodicity decision problems on events induced by qfa's
- Transient and ergodic components of the nonhalting space
- Conclusion and open problems

Deterministic finite automata (dfa)

input alphabet

set of states

initial state $\pi_0 \in \{0,1\}^{|Q|}$

$DA = \langle \Sigma, Q, \pi_0, \{B(\sigma)\}_{\sigma \in \Sigma}, \eta \rangle$

transition matrices $B(\sigma) \in \{0,1\}^{|Q| \times |Q|}$

characteristic vector of the final states $\eta \in \{0,1\}^{|Q|}$

Language recognized by DA:

$$L_{DA} = \{ w \in \Sigma^* | \pi_0 B(w) \eta = 1 \}$$

where, for $w = \sigma_1 \cdots \sigma_n$, it holds $B(w) = B(\sigma_1) \cdots B(\sigma_n)$

Quantum finite automata (qfa)

- $Q = \{q_1, \ldots, q_k\}$ is the set of pure states,
- $\pi = \alpha_1 \bar{q}_1 + \ldots + \alpha_k \bar{q}_k$, such that $\|\pi\| = 1$, is the superposition of the pure states,
- $\alpha_i \in \mathbf{C}$ is the amplitude of q_i in π ,
- $|\alpha_i|^2$ is the probability of observing q_i in π ,
- $U(\sigma) \in \mathbb{C}^{|Q| \times |Q|}$ is the transition unitary matrix $(\pi U(\sigma) = \pi')$,
 - Matrix representation of a qfa:

$$\langle \Sigma, Q, \pi_0, \{U(\sigma)\}_{\sigma \in \Sigma}, O \rangle$$

The Measure-Once model

Matrix representation of a MO-qfa:

$$QA_{MO} = \langle \Sigma, Q, \{U(\sigma)\}_{\sigma \in \Sigma}, O = \eta \rangle$$

The event induced by the automaton QA_{MO} on $w = \sigma_1 \cdots \sigma_n$ is

$$p_{QA}(w) = \|\pi_0 U(w) \operatorname{diag}(\eta)\|^2$$

and represents the probability of accepting the word w.

The Measure-Many model

non-halting states

Matrix representation of a MM-qfa:

halting states

$$QA_{MM} = \left\langle \Sigma, Q, \{U(\sigma)\}_{\sigma \in (\Sigma \cup \{\#\})}, O = \{P_a, P_r, P_g\} \right\rangle$$

The event induced by the automaton QA_{MM} on $w = \sigma_1 \cdots \sigma_n$ is

$$p_{QA}(w) = \sum_{i=1}^{n} \|\pi_0 \prod_{j=1}^{i-1} [U(\sigma_j)P_g] U(\sigma_i)P_a\|^2 + \|\pi_0 \prod_{j=1}^{n} [U(\sigma_j)P_g] U(\sharp)P_a\|^2$$

and represents the probability of accepting the word w.

Languages recognized

Language recognized by QA with cut point $0 \le \lambda \le 1$:

$$L_{QA} = \{ w \in \Sigma^* \mid p_{QA}(w) > \lambda \}$$

For $0 \le \varepsilon \le \frac{1}{2}$, QA recognizes L_{QA} with cut point λ isolated by ε , if it holds

$$p_{QA}(w) \left\{ \begin{array}{ll} \geq \lambda + \varepsilon & \text{se } w \in L_{QA} \\ \leq \lambda - \varepsilon & \text{se } w \notin L_{QA} \end{array} \right.$$

Languages recognized

dfa: regular languages

MO-qfa: reversible regular languages (transition=permutation)

MM-qfa: ?

Forbidden constructions

If a language L contains one of the following patterns in its minimal dfa

Brodsky, Pippenger '99

Ambainis, Kikusts, Valdats '00

then it can not be recognized by a MM-qfa.

Unary regular languages

Unary language: $L \subseteq \{\sigma\}^*$

Standard dfa for a unary language *L*:

T transient states

P ergodic states

Recognition with qfa's

MM-qfa T states

Recognition with cut point $\frac{3}{8}$ isolated by $\frac{1}{8}$, using O(T+P) states

Properties of qfa's

An event *p* is *m*-periodic if, for every $k \ge 0$, it holds

$$p(k) = p(k+m)$$

Example of *P*-periodic event:

$$\chi_P(n)$$

Theorem 3. [7] Let p be an m-periodic event whose discrete Fourier transform $\mathcal{F}(p)$ satisfies $\|\mathcal{F}(p)\|_1 = \sum_{i=1}^m |(\mathcal{F}(p))_i| \leq m$. Then, there exists a MO-1qfa A with $O(\frac{\log m}{\delta^2})$ pure states such that p_A is a δ -approximation of the event $\frac{1}{2} + \frac{1}{2}p$.

Particular cases

If $\|\mathcal{F}(\chi_P)\|_1 \leq P$:

$$\frac{1}{2} \chi_{T}(n) + \frac{1}{4} \chi_{P}(n) + \frac{1}{4} \chi_{\hat{T}}(n)$$

$$\downarrow By Theorem 3$$

$$\frac{1}{2} \chi_{T}(n) + \frac{1}{4} \left(\frac{1}{2} + \frac{1}{2} \chi_{P}(n) + f_{\delta}(n) \right) + \frac{1}{4} \chi_{\hat{T}}(n)$$

Recognition with cut point $\frac{7}{16}$ isolated by $\frac{1}{32}$, using $O(T + \log P)$ states.

Particular cases

Ultimately periodic languages of period 1:

If $\|\mathcal{F}(\chi_{T^{\circ}})\|_{1} \leq T^{3}$ we can induce the event 2 states $(\cos \theta)^{2n} \left(\frac{1}{2} + \frac{1}{2}\chi_{T^{\circ}}(n) + f_{1/8}(n)\right)$

and recognize L with cut point $\frac{11}{16}$ isolated by $\frac{1}{16}$, using $O(\log T)$ states.

Particular cases

Ultimately periodic languages of period 1:

Similarly, if $\|\mathcal{F}(\bar{\chi}_{T^{\circ}})\|_1 \leq T^3$ we can induce the event

$$1 - (\cos\theta)^{2n} \left(\frac{1}{2} + \frac{1}{2}\bar{\chi}_{T^{\circ}}(n) + f_{1/8}(n)\right)$$

and recognize L with cut point $\frac{5}{16}$ isolated by $\frac{1}{16}$, using $O(\log T)$ states.

Establishing d-periodic behaviors

d - PERIODICITY

- Input: a unary qfa A and an integer d > 0.
- Question: is p_A a *d*-periodic event?
- For any unary MM-qfa we give a simple representation $(\tilde{\pi}, \tilde{U}, \tilde{\eta}_1, \tilde{\eta}_2)$, such that

$$p_A(n) = \sum_{i=1}^{n-1} \tilde{\pi} \tilde{U}^i \tilde{\eta}_1 + \tilde{\pi} \tilde{U}^n \tilde{\eta}_2$$

$$- \tilde{\pi} = \pi \otimes \pi^*,
- \tilde{U} = (U(\sigma)P_I(g)) \otimes (U(\sigma)P_I(g))^*,
- \tilde{\eta}_1 = (U(\sigma) \otimes U(\sigma)^*) \sum_{j=1}^m (P_I(a))_j \otimes (P_I(a))_j,
- \tilde{\eta}_2 = (U(\#) \otimes U(\#)^*) \sum_{j=1}^m (P_F(a))_j \otimes (P_F(a))_j$$

Establishing d-periodic behaviors

d-periodicity condition: $\forall n \in \mathbb{N} \ p_A(n) = p_A(n+d)$

V

Establishing d-periodic behaviors

d-periodicity condition: $\forall n \in \mathbb{N} \ p_A(n) = p_A(n+d)$

In the input qfa has rational entries, so do P(z) and P'(z), and their degree is at most the dimension of U
, so the check can be done in polynomial time.

Analyzing the non-halting space

- **Lemma.** [Ambainis, Freivalds '98] There exist two subspaces E_1, E_2 such that $E_g = E_1 \oplus E_2$, and
 - if $\pi \in E_1$, then $\pi U(\sigma)P(g) \in E_1$ and $\|\pi U(\sigma)P(g)\| = \|\pi\|$;
 - if $\pi \in E_2$, then $\|\pi(U(\sigma)P(g))^k\| \to 0$, for $k \to \infty$.
- E_1 is the ergodic space and E_2 the transient space.
- Problem: finding the dimension of E₁ (and E₂).
 Key idea: count the modulus 1 eigenvalues of the restriction of U(σ)P(g) to E_g.
- For any MM-qfa $A = (\pi, \{U(\sigma), U(\sharp)\}, \mathcal{O})$, there exists an equivalent $A' = (\pi', \{M(\sigma), M(\sharp)\}, \mathcal{O}')$ described by real entries [Blondel et al., '05]

$$\pi_{i} = a + ib \qquad (a, b)$$
$$U_{ij} = c + id \qquad (c d) \\ -d c \end{pmatrix}$$

Analyzing the non-halting space

Let U_g and M_g be the restriction of, resp., $U(\sigma)$ and $M(\sigma)$ to E_g . We show that:

 If λ₁,..., λ_μ are the eigenvalues of U_g, then the eigenvalues of M_g are λ₁,..., λ_μ, λ^{*}₁,..., λ^{*}_μ.

If
$$\lambda_j = e^{i\theta_j}$$
, then $\lambda_j^* = e^{-i\theta_j} = \frac{1}{\lambda_j}$ is a root of $q_{M_g}(\lambda)$;
if $|\lambda_j| < 1$ then $\left|\frac{1}{\lambda_j}\right| > 1$, therefore $\frac{1}{\lambda_j}$ cannot be a root of $q_{M_g}(\lambda)$.

Our algorithm:

- compute $h_{M_g}(\lambda) = \gcd(q_{M_g}(\lambda), q_{M_g}(\frac{1}{\lambda}));$
- output: deg[$h_{M_g}(\lambda)$] / 2 ;

Time complexity:

polynomial if A has rational entries.

Conclusion

Contributions:

- characterization of the class of languages recognized by unary MM-qfa's;
- families of languages for which the recognizing MM-qfa is exponentially smaller;
- decision problems on d-periodicity;
- analysis of the non-halting subspaces dimensions.

Open problems:

- MM-qfa's for more general classes of languages;
- other periodicity problems on events and languages.