An Automaton-based Formalism for Cooperative Augmented Reality Systems

Felix G. Hamza-Lup1) \quad Ferucio Laurenţiuu Țiplea2)

1) Department of Computer Science, Armstrong Atlantic State University, Savannah, Georgia 31419-1997, USA
2) Department of Computer Science, “Al.I.Cuza” University, Iasi, Romania

NCMA 2009
Outline

1. (Cooperative) Augmented Reality Systems
2. Modeling CARSs
3. Basic Properties of CARSs
4. Conclusions
Augmented Reality Systems

- The basic idea of augmented reality is to superimpose graphics, audio and other sense enhancements over a real-world environment in real-time, and to change them to accommodate a user’s head- and eye-movements, so that the graphics always fit the perspective;

- Augmented reality is still in an early stage of research and development at various universities and high-tech companies;

- Three basic components needed to make an augmented-reality system work:
 - head-mounted display;
 - tracking system;
 - mobile computing power.
There are hundreds of potential applications for augmented reality, such as:

- medicine;
- maintenance and construction;
- military;
- gaming;
- instant information

More details about AR systems and related projects:

http://cs.armstrong.edu/felix/
Example of Cooperative Augmented Reality System:

Endo-tracheal Intubation (ETI)

Figure: Instructors visualizing the 3D models relative position (left), while a remote student performs the ETI procedure (right)
Example of Cooperative Augmented Reality System: Remote Telerobotic Manipulation

Figure: Multi-Modal Interaction System
An Automaton-based Formalism for CARSs

F.L. Tiplea

Augmented Reality Systems
Modeling CARSs
Basic Properties of CARSs
Conclusions

Modeling CARSs

- **Actors** — entities that are able to perform complex operations on a given set of variables.\[A = \{A_1, \ldots, A_k\} \] is a given set of actors;

- **Objectives** — sequence of actions that actors are to perform in order to drive the system from its initial state \(\gamma_0 \) to some final state \(\gamma_f \).

 An o-state (observation state) is a valuation \(\gamma \) of a given set \(V = \{x_1, \ldots, x_m\} \) of (typed) variables.

 \(\Gamma \) is the set of all o-states.

- **Environments and actions** —

 \(read_A : Q \rightarrow T \) is the read-time function of \(A \);

 \(write_A : Q \rightarrow T \) is the write-time function of \(A \);
Modeling CARSs

- **Modeling actors** — An actor is a 4-tuple \(A = (Q, \Sigma, \delta, q_0) \), where
 \[\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q \times \Sigma) \]
 (\(\delta \) may be a partial function).
 Infinite input sets are allowed;

- **Time constraints** — A time-constraint is any function
 \[C : \Gamma \rightarrow T \cup \{\infty\} \]
 which gives the maximum delay permitted to the actors to trigger their actions in a state \(\gamma \).
 \(C(\gamma) = \infty \) means that no time-constraint is imposed.
Cooperative system (CS) — is a 5-tuple

\[S = (\mathcal{V}, \mathcal{A}, \text{read}_\mathcal{A}, \text{write}_\mathcal{A}, C) \]

Computation — transition relation between configurations

\[(t, q^1_1, \ldots, q^k_1, \gamma) \vdash (t', q^1_2, \ldots, q^k_2, \gamma')\]

iff there exists an \(i \) such that:

- \(\text{read}_{\mathcal{A}_i}(q^i_1) \leq C(\gamma) \) (i.e., \(A_i \) satisfies the time-constraint \(C(\gamma) \));

- \(A_i \) performs an action, i.e.
 - \(\delta_i(q^i_1, \gamma) = (q^i_2, \gamma') \);
 - \(t' = t + \text{read}_{\mathcal{A}_i}(q^i_1) + \text{write}_{\mathcal{A}_i}(q^i_1) \);

- \(q^j_2 = q^j_1 \), for all \(j \neq i \) (i.e., the other actors do not perform any action).
Objectives again — variations of the reachability problem:

Reachability Problem
- Instance: cooperative system S, initial o-state γ_0, and final o-state γ_f;
- Question: is γ_f reachable from γ_0?

P-Reachability Problem
- Instance: cooperative system S, initial o-state γ_0, final o-state γ_f, and predicate P over Γ;
- Question: is γ_f P-reachable from γ_0?

Time-reachability Problem
- Instance: cooperative system S, initial o-state γ_0, final o-state γ_f, predicate P over Γ, and time value t;
- Question: is γ_f P-reachable from γ_0 in time $t' \leq t$?
An Automaton-based Formalism for CARSs

F.L. Tiplea

Augmented Reality Systems

Modeling CARSs

Basic Properties of CARSs

Conclusions

Modeling CARSs

Example of an actor in ETI:

![Diagram of an automaton for modeling CARSs](image)

\[read_{A_2}(q) = write_{A_2}(q) = \tau, \forall q \]

- \(q_0 \): br and hr normal
- \(q_1 \): br at least once modified
- \(q_2 \): br and hr at least once modified
- \(q_3 \): hr at least once modified

Figure: Actor \(A_2 \)
From PN to CS:

\[M[t] M' \iff (0, q_0, \ldots, q_0, \gamma_M) A_t \vdash (0, q_0, \ldots, q_0, \gamma_{M'}) \]

Figure: a) A transition \(t \); b) The actor \(A_t \)
From CS to PN:

- A cooperative system S is called **monotonic** if:
 - for any variable x, its domain is \mathbb{N};
 - for any actor A and any transition $(q', \gamma') \in \delta(q, \gamma)$ of A, the following property holds true
 $$(q', \bar{\gamma} + (\gamma' - \gamma)) \in \delta(q, \bar{\gamma}),$$
 for any $\bar{\gamma} \geq \gamma$ (the inequality between functions is component-wise defined).

- A monotonic cooperative system S is called **locally finite** if for any actor A and any states q and q' of A, there exists a finite set of vectors with integer components, $\{V_1, \ldots, V_p\}$, such that for any transition $(q', \gamma') \in \delta(q, \gamma)$ of A there exists i with $\gamma' - \gamma = V_i$.

Theorem 1

For any monotonic and locally finite cooperative system S without time-constraints, there exists a Petri net Σ such that for any configurations c and c' of S there are two markings M_c and $M_{c'}$ and a transition $t_{c,c'}$ satisfying

$$c \vdash c' \iff M_c[t_{c,c'}]M_{c'}.$$
From CS to PN (example):

Figure: a) A CS with only one actor A; b) A Petri net associated to the CS in a)
Theorem 2
The reachability problem for cooperative systems is undecidable.

Proof.
The halting problem for counter machines can be reduced to the reachability problem for CS.
Reachability Problem for Cooperative Systems

Theorem 3

The polynomial time-reachability problem for finite-domain cooperative systems is NP-complete.

Proof.

Membership to NP \((S, \gamma_0, \gamma_f, \text{predicate } P \text{ verifiable in polynomial time, and time value } t \text{ of polynomial size (w.r.t. } |S|)|):

- guess a sequence of transitions of length at most \(t\) such that the first one rewrites \(\gamma_0\) and the last one ends up with \(\gamma_f\);
- if the sequence induces a computation
 - then if each configuration in computation verifies \(P\)
 - then “yes” else “no”;

NP-hardness: reduction from the Hamiltonian circuit problem.
This work proposes an automaton-based formalism for CARSs;

Future work:
- in-depth study of the basic properties of the model;
- verification techniques (based on automata theory (reachability-based techniques, model checking etc.));
- accommodate delays in the formalism.