Clearing Restarting Automata

PETER ČERNO
FRANTIŠEK MRÁZ
We propose a new restricted version of restarting automata called Clearing Restarting Automata.
We propose a new restricted version of restarting automata called **Clearing Restarting Automata**. The new model can be learned very efficiently from positive examples and its stronger version enables to learn effectively a large class of languages.
We propose a new restricted version of restarting automata called **Clearing Restarting Automata**.

The new model can be learned very efficiently from positive examples and its stronger version enables to learn effectively a large class of languages.

We relate the class of languages recognized by clearing restarting automata to the **Chomsky hierarchy**.
Definition

- Let k be a positive integer.
Definition

- Let k be a **positive integer**.
- k-clearing restarting automaton (**k-cl-RA-automaton** for short) is a couple $M = (\Sigma, I)$, where:
Definition

- Let k be a *positive integer*.
- *k-clearing restarting automaton* (k-cl-RA-automaton for short) is a couple $M = (\Sigma, I)$, where:
 - Σ is a finite nonempty *alphabet*, $\$, $\$ \notin \Sigma$.

Definition

Let k be a positive integer.

k-clearing restarting automaton (k-cl-RA-automaton for short) is a couple $M = (\Sigma, I)$, where:

- Σ is a finite nonempty alphabet, $\emptyset, \$ \notin \Sigma$.
- I is a finite set of instructions $(x, z, y), x \in LC_k, y \in RC_k, z \in \Sigma^+$,
 - left context $LC_k = \Sigma^k \cup \emptyset, \Sigma^{\leq k-1}$
 - right context $RC_k = \Sigma^k \cup \Sigma^{\leq k-1}, \$

Definition

Let k be a positive integer.

k-clearing restarting automaton (k-cl-RA-automaton for short) is a couple $M = (\Sigma, I)$, where:

- Σ is a finite nonempty alphabet, $\varnothing, \$ \not\in \Sigma$.
- I is a finite set of instructions $(x, z, y), x \in LC_k, y \in RC_k, z \in \Sigma^+$,
 - left context $LC_k = \Sigma^k \cup \varnothing. \Sigma^{\leq k-1}$
 - right context $RC_k = \Sigma^k \cup \Sigma^{\leq k-1}.\$

- The special symbols: \varnothing and $\$ are called sentinels.
Definition

- Let k be a positive integer.
- k-clearing restarting automaton (k-cl-RA-automaton for short) is a couple $M = (\Sigma, I)$, where:
 - Σ is a finite nonempty alphabet, $\varnothing, \$ \not\in \Sigma$.
 - I is a finite set of instructions (x, z, y), $x \in LC_k$, $y \in RC_k$, $z \in \Sigma^+$,
 - left context $LC_k = \Sigma^k \cup \varnothing.\Sigma^{\leq k-1}$
 - right context $RC_k = \Sigma^k \cup \Sigma^{\leq k-1}.\$
 - The special symbols: \varnothing and $\$ are called sentinels.
 - The width of the instruction $i = (x, z, y)$ is $|i| = |xzy|$.
A word $w = uzv$ can be \textit{rewritten} to $uv (u \sqsubseteq v \vdash_M uv)$ if and only if there exist an instruction $i = (x, z, y) \in I$ such that:

- $x \sqsupseteq \%u$ (\textit{x} is a suffix of \%u)
- $y \sqsubseteq v$ (\textit{y} is a prefix of \v)
A word \(w = uzv \) can be \textit{rewritten} to \(uv \) (\(u\mathrel{\not\sqsubseteq} v \vdash_M uv \)) if and only if there exist an instruction \(i = (x, z, y) \in I \) such that:

- \(x \sqsupseteq \mathcal{C}.u \) (\(x \) is a suffix of \(\mathcal{C}.u \))
- \(y \sqsubseteq v.\$ \) (\(y \) is a prefix of \(v.\$ \))

A word \(w \) is \textit{accepted} if and only if \(w \vdash_M^* \lambda \) where \(\vdash_M^* \) is reflexive and transitive closure of \(\vdash_M \).
A word $w = uzv$ can be rewritten to uv ($u \preceq v \vdash_M uv$) if and only if there exist an instruction $i = (x, z, y) \in I$ such that:
- $x \supseteq \cdot u$ (x is a suffix of $\cdot u$)
- $y \subseteq v.$ (y is a prefix of $v.$)

A word w is accepted if and only if $w \vdash^* M \lambda$ where $\vdash^* M$ is reflexive and transitive closure of \vdash_M.

The k-cl-RA-automaton M recognizes the language $L(M) = \{w \in \Sigma^* | M$ accepts $w\}$.
Definition

- By \textit{cl-RA} we will denote the class of all clearing restarting automata.
Definition

• By cl-RA we will denote the class of all clearing restarting automata.
• $\mathcal{L}(k$-cl-$RA)$ denotes the class of all languages accepted by k-cl-RA-automata.
Definition

- By \textit{cl-RA} we will denote the \textbf{class of all clearing restarting automata}.
- \(\mathcal{L}(k\text{-cl-RA})\) denotes the \textbf{class of all languages} accepted by \textit{k-cl-RA-automata}.
- Similarly \(\mathcal{L}(cl\text{-RA})\) denotes the \textbf{class of all languages} accepted by \textit{cl-RA-automata}.
Definition

- By \(cl-RA \) we will denote the class of all clearing restarting automata.
- \(\mathcal{L}(k-cl-RA) \) denotes the class of all languages accepted by \(k-cl-RA \)-automata.
- Similarly \(\mathcal{L}(cl-RA) \) denotes the class of all languages accepted by \(cl-RA \)-automata.
- \(\mathcal{L}(cl-RA) = \bigcup_{k \geq 1} \mathcal{L}(k-cl-RA) \).
Definition

- By \(cl-RA \) we will denote the class of all clearing restarting automata.
- \(\mathcal{L}(k-cl-RA) \) denotes the class of all languages accepted by \(k-cl-RA \)-automata.
- Similarly \(\mathcal{L}(cl-RA) \) denotes the class of all languages accepted by \(cl-RA \)-automata.
- \(\mathcal{L}(cl-RA) = \bigcup_{k \geq 1} \mathcal{L}(k-cl-RA) \).
- **Note:** For every \(cl-RA \) \(M \): \(\lambda \vdash^* M \lambda \) hence \(\lambda \in L(M) \). If we say that \(cl-RA \) \(M \) recognizes a language \(L \), we mean that \(L(M) = L \cup \{\lambda\} \).
Motivation

- This model was inspired by the *Associative Language Descriptions (ALD)* model:
 - By Alessandra Cherubini, Stefano Crespi-Reghizzi, Matteo Pradella, Pierluigi San Pietro.
 - See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html
Motivation

- This model was inspired by the *Associative Language Descriptions (ALD)* model:
 - By Alessandra Cherubini, Stefano Crespi-Reghizzi, Matteo Pradella, Pierluigi San Pietro.
 - See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html
- The simplicity of *cl-RA* model implies that the investigation of its properties is not so difficult and also the learning of languages is easy.
Motivation

- This model was inspired by the *Associative Language Descriptions (ALD)* model:
 - By Alessandra Cherubini, Stefano Crespi-Regghizzi, Matteo Pradella, Pierluigi San Pietro.
 - See: http://home.dei.polimi.it/sanpietr/ALD/ALD.html
- The simplicity of *cl-RA* model implies that the investigation of its properties is not so difficult and also the learning of languages is easy.
- Another important advantage of this model is that the instructions are human readable.
Example

- Language $L = \{a^n b^n \mid n \geq 0\}$.
Example

- Language \(L = \{a^n b^n \mid n \geq 0\} \).
- Can be recognized by the 1-cl-RA \(M = (\{a, b\}, I) \), where the instructions \(I \) are:
 - \(R1 = (a, ab, b) \)
 - \(R2 = (\$, ab, \$) \)
Example

- Language \(L = \{a^n b^n \mid n \geq 0\} \).
- Can be recognized by the 1-cl-RA \(M = (\{a, b\}, I) \), where the instructions \(I \) are:
 - \(R1 = (a, ab, b) \)
 - \(R2 = (\$, ab, \$) \)
- For instance:
 - \(aaaabbbb \xrightarrow{R1} aaabbb \)
Example

- Language \(L = \{a^n b^n \mid n \geq 0\} \).
- Can be recognized by the 1-cl-RA \(M = (\{a, b\}, I) \), where the instructions \(I \) are:
 - \(R1 = (a, ab, b) \)
 - \(R2 = (\$, ab, \$) \)
- For instance:
 - \(aaaabbbb \xleftarrow{R1} aaabbb \xleftarrow{R1} aabb \)
Example

- Language $L = \{a^n b^n \mid n \geq 0\}$.
- Can be recognized by the 1-cl-RA $M = (\{a, b\}, I)$, where the instructions I are:
 - $R1 = (a, ab, b)$
 - $R2 = (\$, ab, \$)$
- For instance:
 - $aaaabbbb \vdash R1 aaabbb \vdash R1 aabbb \vdash R1 ab$
Example

- Language $L = \{a^n b^n \mid n \geq 0\}$.
- Can be recognized by the 1-cl-RA $M = (\{a, b\}, I)$, where the instructions I are:
 - $R1 = (a, ab, b)$
 - $R2 = (\$, ab, \$)
- For instance:
 - $aaaabbbb \vdash^{R1} aaabbb \vdash^{R1} aabb \vdash^{R1} ab \vdash^{R2} \lambda$.
- Now we see that the word $aaaabbbb$ is accepted because $aaaabbbb \vdash^*_M \lambda$.
Some Theorems

- **Error preserving property**: Let $M = (\Sigma, I)$ be a cl-RA-automaton and u, v be two words from Σ^*. If $u \not\vdash^*_M v$ and $u \not\in L(M)$, then $v \not\in L(M)$.

 Proof. $v \in L(M) \Rightarrow v \vdash^*_M \lambda \Rightarrow u \vdash^*_M v \vdash^*_M \lambda \Rightarrow u \in L(M)$. ■
Some Theorems

- **Error preserving property:** Let $M = (\Sigma, I)$ be a cl-RA-automaton and u, v be two words from Σ^*. If $u \vdash^*_M v$ and $u \notin L(M)$, then $v \notin L(M)$.
 - **Proof.** $v \in L(M) \Rightarrow v \vdash^*_M \lambda \Rightarrow u \vdash^*_M v \vdash^*_M \lambda \Rightarrow u \in L(M)$. ■

- **Observation:** For each finite $L \subseteq \Sigma^*$ there exist 1-cl-RA-automaton M such that $L(M) = L \cup \{\lambda\}$.
 - **Proof.** Suppose $L = \{w_1, \ldots, w_n\}$.
 Consider $I = \{(\$, w_1, $), \ldots, (\$, w_n, $)\}$. ■
Theorem: \(\mathcal{L}(k\text{-}cl\text{-}RA) \subset \mathcal{L}((k+1)\text{-}cl\text{-}RA) \), for all \(k \geq 1 \).

Note: The following language: \(\{ (c^k a c^k)^n (c^k b c^k)^n \mid n \geq 0 \} \) belongs to \(\mathcal{L}((k+1)\text{-}cl\text{-}RA) - \mathcal{L}(k\text{-}cl\text{-}RA) \).
Some Theorems

- **Theorem**: \(\mathcal{L}(k\text{-cl-RA}) \subset \mathcal{L}((k+1)\text{-cl-RA}) \), for all \(k \geq 1 \).
 - **Note**: The following language: \(\{ (c^kac^k)^n (c^kbc^k)^n \mid n \geq 0 \} \) belongs to \(\mathcal{L}((k+1)\text{-cl-RA}) - \mathcal{L}(k\text{-cl-RA}) \).

- **Theorem**: For each regular language \(L \subseteq \Sigma^* \) there exist a \(k\text{-cl-RA-automaton} \) \(M : L(M) = L \cup \{ \lambda \} \).
Some Theorems

- **Theorem**: \(\mathcal{L}(k\text{-}cl\text{-}RA) \subset \mathcal{L}((k+1)\text{-}cl\text{-}RA) \), for all \(k \geq 1 \).
 - **Note**: The following language: \(\{ (c^kac^k)^n (c^kb^c)^n \mid n \geq 0 \} \) belongs to \(\mathcal{L}((k+1)\text{-}cl\text{-}RA) - \mathcal{L}(k\text{-}cl\text{-}RA) \).

- **Theorem**: For each regular language \(L \subseteq \Sigma^* \) there exist a \(k\text{-}cl\text{-}RA \) automaton \(M : L(M) = L \cup \{ \lambda \} \).
 - **Proof**: Based on **pumping lemma for regular languages**.
Some Theorems

- **Theorem:** $\mathcal{L}(k\text{-cl-RA}) \subset \mathcal{L}((k+1)\text{-cl-RA})$, for all $k \geq 1$.
 - **Note:** The following language: $\{(c^kac^k)^n(c^kbc^k)^n | n \geq 0\}$ belongs to $\mathcal{L}((k+1)\text{-cl-RA}) - \mathcal{L}(k\text{-cl-RA})$.

- **Theorem:** For each regular language $L \subseteq \Sigma^*$ there exist a $k\text{-cl-RA}$-automaton $M : L(M) = L \cup \{\lambda\}$.
 - **Proof.** Based on pumping lemma for regular languages.
 - For each $z \in \Sigma^*$, $|z| = n$ there exist u, v, w such that $|v| \geq 1$ and $\delta(q_0, uv) = \delta(q_0, u)$; the word v can be crossed out.
Some Theorems

- **Theorem**: \(\mathcal{L}(k\text{-}cl\text{-}RA) \subset \mathcal{L}((k+1)\text{-}cl\text{-}RA) \), for all \(k \geq 1 \).
 - **Note**: The following language: \(\{ (c^k a c^k)^n (c^k b c^k)^n \mid n \geq 0 \} \) belongs to \(\mathcal{L}((k+1)\text{-}cl\text{-}RA) - \mathcal{L}(k\text{-}cl\text{-}RA) \).

- **Theorem**: For each regular language \(L \subseteq \Sigma^* \) there exist a \(k\text{-}cl\text{-}RA\)-automaton \(M : L(M) = L \cup \{ \lambda \} \).
 - **Proof**: Based on pumping lemma for regular languages.
 - For each \(z \in \Sigma^* , |z| = n \) there exist \(u, v, w \) such that \(|v| \geq 1 \) and \(\delta(q_0, uv) = \delta(q_0, u) \); the word \(v \) can be crossed out.
 - We add corresponding instruction \(i_z = (\cdot, u, v, w) \).
Some Theorems

- **Theorem:** \(\mathcal{L}(k\text{-cl-RA}) \subset \mathcal{L}((k+1)\text{-cl-RA}) \), for all \(k \geq 1 \).
 - **Note:** The following language: \(\{ (c^kac^k)^n (c^kb^c)^n \mid n \geq 0 \} \) belongs to \(\mathcal{L}((k+1)\text{-cl-RA}) - \mathcal{L}(k\text{-cl-RA}) \).

- **Theorem:** For each regular language \(L \subseteq \Sigma^* \) there exist a \(k\text{-cl-RA}-\)automaton \(M : L(M) = L \cup \{ \lambda \} \).
 - **Proof.** Based on pumping lemma for regular languages.
 - For each \(z \in \Sigma^* \), \(|z| = n\) there exist \(u, v, w \) such that \(|v| \geq 1\) and \(\delta(q_0, uv) = \delta(q_0, u) \); the word \(v \) can be crossed out.
 - We add corresponding instruction \(i_z = (\cdot, u, v, w) \).
 - For each accepted \(z \in \Sigma^{<n} - \{ \lambda \} \) we add instruction \(i_z = (\cdot, z, \$) \).
Some Theorems

- **Theorem:** The language $L_1 = \{a^n cb^n \mid n \geq 0\} \cup \{\lambda\}$ is not recognized by any cl-RA-automaton.
Some Theorems

- **Theorem**: The language $L_1 = \{a^n b^n \mid n \geq 0\} \cup \{\lambda\}$ is not recognized by any cl-RA-automaton.
 - **Note**: L_1 can be recognized by a simple RRWW-automaton. Moreover L_1 is a context-free language, thus we get the following corollary:

- **Corollary**:
 - $\mathcal{L}(cl$\text{-}$RA) \subset \mathcal{L}(RRWW)$.
 - $CFL - \mathcal{L}(cl$\text{-}$RA) \neq \emptyset$.
Some Theorems

- Let $L_2 = \{ a^n b^n \mid n \geq 0 \}$ and $L_3 = \{ a^n b^{2n} \mid n \geq 0 \}$ be two sample languages. Apparently both L_2 and L_3 are recognized by 1-cl-RA-automata.
Some Theorems

- Let $L_2 = \{a^n b^n \mid n \geq 0\}$ and $L_3 = \{a^n b^{2n} \mid n \geq 0\}$ be two sample languages. Apparently both L_2 and L_3 are recognized by 1-cl-RA-automata.

- Theorem: Languages $L_2 \cup L_3$ and $L_2 \cdot L_3$ are not recognized by any cl-RA-automaton.
Some Theorems

Let $L_2 = \{a^n b^n / n \geq 0\}$ and $L_3 = \{a^n b^{2n} / n \geq 0\}$ be two sample languages. Apparently both L_2 and L_3 are recognized by 1-cl-RA-automata.

Theorem: Languages $L_2 \cup L_3$ and $L_2 \cdot L_3$ are not recognized by any cl-RA-automaton.

Corollary: $\mathcal{L}(cl\text{-}RA)$ is not closed under union, concatenation, and homomorphism.

- For homomorphism use $\{a^n b^n / n \geq 0\} \cup \{c^n d^{2n} / n \geq 0\}$ and homomorphism defined as: $a \mapsto a$, $b \mapsto b$, $c \mapsto a$, $d \mapsto b$. ■
Some Theorems

- It is easy to see that each of the following languages:
 - $L_4 = \{a^n cb^n \mid n \geq 0\} \cup \{a^m b^m \mid m \geq 0\}$
 - $L_5 = \{a^n c b^m \mid n, m \geq 0\} \cup \{\lambda\}$
 - $L_6 = \{a^m b^m \mid m \geq 0\}$

can be recognized by a 1-cl-RA-automaton.
Some Theorems

- It is easy to see that each of the following languages:
 - $L_4 = \{a^n c b^n / n \geq 0\} \cup \{a^m b^m / m \geq 0\}$
 - $L_5 = \{a^n c b^m / n, m \geq 0\} \cup \{\lambda\}$
 - $L_6 = \{a^m b^m / m \geq 0\}$

 can be recognized by a 1-cl-RA-automaton.

- **Corollary:** $\mathcal{L}(cl-RA)$ is **not closed** under:
 - intersection: $L_1 = L_4 \cap L_5$.
Some Theorems

- It is easy to see that each of the following languages:
 - \(L_4 = \{a^n cb^n \mid n \geq 0\} \cup \{a^m b^m \mid m \geq 0\} \)
 - \(L_5 = \{a^n cb^m \mid n, m \geq 0\} \cup \{\lambda\} \)
 - \(L_6 = \{a^m b^m \mid m \geq 0\} \)
 can be recognized by a 1-cl-RA-automaton.
- **Corollary:** \(\mathcal{L}(cl\text{-}RA) \) is not closed under:
 - intersection: \(L_1 = L_4 \cap L_5 \).
 - intersection with regular language: \(L_5 \) is regular.
Some Theorems

- It is easy to see that each of the following languages:
 - $L_4 = \{a^n c b^n \mid n \geq 0\} \cup \{a^m b^m \mid m \geq 0\}$
 - $L_5 = \{a^n c b^m \mid n, m \geq 0\} \cup \{\lambda\}$
 - $L_6 = \{a^m b^m \mid m \geq 0\}$

can be recognized by a 1-cl-RA-automaton.

- **Corollary**: $\mathcal{L}(cl\text{-}RA)$ is **not closed** under:
 - intersection: $L_1 = L_4 \cap L_5$.
 - intersection with regular language: L_5 is regular.
 - set difference: $L_1 = (L_4 - L_6) \cup \{\lambda\}$.
Parentheses

- The following instruction of $1-cl$-RA M is enough for recognizing the language of correct parentheses:
 - (λ, ($), \lambda$)
Parentheses

The following instruction of 1-cl-RA M is enough for recognizing the language of correct parentheses:

- $(\lambda, (,), \lambda)$
 - **Note:** This instruction represents a set of instructions:
 - $({\emptyset}\cup\Sigma, (,), \Sigma\cup\{\}$), where $\Sigma = \{(,),\}$ and
 - $(A, w, B) = \{(a, w, b) \mid a\in A, b\in B\}$.
The following instruction of 1-cl-$RA \ M$ is enough for recognizing the language of correct parentheses:

$(\lambda, (\), \lambda)$

- **Note**: This instruction represents a set of instructions:
 - $({\emptyset}\cup\Sigma, (\), \Sigma\cup\{\$\})$, where $\Sigma = \{(\), (\)\}$ and
 - $(A, w, B) = \{(a, w, b) \mid a \in A, b \in B\}$.

- **Note**: We use the following notation for the (A, w, B):
Arithmetic Expressions

- Suppose that we want to check correctness of arithmetic expressions over the alphabet $\Sigma = \{\alpha, +, *, (,)\}$.
Arithmetic Expressions

- Suppose that we want to check correctness of arithmetic expressions over the alphabet $\Sigma = \{\alpha, +, *, ()\}$.
- For example $\alpha + (\alpha * \alpha + \alpha)$ is correct, $\alpha * + \alpha$ is not.
Suppose that we want to check correctness of arithmetic expressions over the alphabet $\Sigma = \{ \alpha, +, *, (,) \}$.

For example $\alpha + (\alpha \ast \alpha + \alpha)$ is correct, $\alpha \ast + \alpha$ is not.

The priority of the operations is considered.
Suppose that we want to check correctness of arithmetic expressions over the alphabet $\Sigma = \{\alpha, +, *, (,)\}$.

For example $\alpha+(\alpha*\alpha+\alpha)$ is correct, $\alpha*+\alpha$ is not.

The priority of the operations is considered.

The following $1-cl$-RA-automaton is sufficient:
Arithmetic Expressions - Example

<table>
<thead>
<tr>
<th>Expression</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha\alpha + ((\alpha + \alpha) + (\alpha + \alpha\alpha))\alpha$</td>
<td>($\epsilon, \alpha^*, \alpha$)</td>
</tr>
<tr>
<td>$\alpha + ((\alpha + \alpha) + (\alpha + \alpha\alpha))\alpha$</td>
<td>($\alpha, +\alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + ((\alpha) + (\alpha + \alpha\alpha))\alpha$</td>
<td>($, *\alpha, $)</td>
</tr>
<tr>
<td>$\alpha + ((\alpha) + (\alpha + \alpha\alpha))$</td>
<td>($+, \alpha^*, \alpha$)</td>
</tr>
<tr>
<td>$\alpha + ((\alpha) + (\alpha + \alpha))$</td>
<td>($, \alpha+, \alpha$)</td>
</tr>
<tr>
<td>$\alpha + ((\alpha) + (\alpha))$</td>
<td>($, \alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + ((\alpha) + (\alpha))$</td>
<td>($, \alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + ((\alpha) + (\alpha))$</td>
<td>($, \alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + ((\alpha))$</td>
<td>($, \alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + (\alpha)$</td>
<td>($, \alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + (\alpha)$</td>
<td>($, \alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + (\alpha)$</td>
<td>($, \alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + (\alpha)$</td>
<td>($, \alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + (\alpha)$</td>
<td>($, \alpha,)$)</td>
</tr>
<tr>
<td>$\alpha + (\epsilon)$</td>
<td>($, \alpha+, (\epsilon)$</td>
</tr>
<tr>
<td>ϵ</td>
<td>($, \alpha+, \epsilon$)</td>
</tr>
<tr>
<td>α</td>
<td>($, \alpha+, (\epsilon$)</td>
</tr>
<tr>
<td>λ</td>
<td>accept</td>
</tr>
</tbody>
</table>
Nondeterminism

- Assume the following instructions:
 - \(R1 = (bb, a, bbbb) \)
 - \(R2 = (bb, bb, $) \)
 - \(R3 = (\$, cbb, $) \)

and the word: \(cbbabbb \).
Nondeterminism

- Assume the following instructions:
 - $R_1 = (bb, a, bbbb)$
 - $R_2 = (bb, bb, \$$)
 - $R_3 = (\$, cbb, \$$)

and the word: $cbbabbbb$. Then:
 - $cbbabbbb \vdash_{R_1} cbbbbb \vdash_{R_2} cbbb \vdash_{R_2} cbb \vdash_{R_3} \lambda$.
Nondeterminism

- Assume the following instructions:
 - $R1 = (bb, a, bbbb)$
 - $R2 = (bb, bb, \$)$
 - $R3 = (\$, cbb, \$)$

and the word: $cbbabbb$. Then:
 - $cbbabbb \vdash^{R1} cbbabbb \vdash^{R2} cbbabbb \vdash^{R2} cbb \vdash^{R3} \lambda$.

- **But** if we have started with $R2$:
 - $cbbabbb \vdash^{R2} cbbabbb$

 then it would not be possible to continue.
Nondeterminism

- Assume the following instructions:
 - $R_1 = (bb, a, bbbb)$
 - $R_2 = (bb, bb, \$)$
 - $R_3 = (\$, cbb, \$)$

and the word: $cbbabbb$. Then:

- $cbbabbb \vdash_{R_1} cbbbbbb \vdash_{R_2} cbbbbb \vdash_{R_2} cbb \vdash_{R_3} \lambda$.

- **But** if we have started with R_2:
 - $cbbabbb \vdash_{R_2} cbbabb$

then it would not be possible to continue.

- \Rightarrow The order of used instructions is important!
Greibach’s Hardest CFL

- As we have seen not all context-free languages are recognized by a cl-RA-automaton.
As we have seen, not all context-free languages are recognized by a *cl-RA*-automaton.

We still can characterize CFL using clearing restarting automata, inverse homomorphism and Greibach’s hardest context-free language.
Greibach’s Hardest CFL

- Greibach constructed a context-free language H, such that:
 - Any context-free language can be parsed in whatever time or space it takes to recognize H.
Greibach’s Hardest CFL

- Greibach constructed a context-free language H, such that:
 - Any context-free language can be parsed in whatever time or space it takes to recognize H.
 - Any context-free language L can be obtained from H by an inverse homomorphism. That is, for each context-free language L, there exists a homomorphism $\varphi: L = \varphi^{-1}(H)$.
By S. A. Greibach, definition from Section 10.5 of M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.

Let $\Sigma = \{a_1, a_2, a_1, a_2, \#, c\}$, $d \not\in \Sigma$.
Greibach’s Hardest CFL

- Let $\Sigma = \{a_1, a_2, a_1, a_2, \#, c\}$, $d \notin \Sigma$.
- Let D_2 be *Semi-Dyck language* on $\{a_1, a_2, a_1, a_2\}$ generated by the grammar: $S \rightarrow \lambda / SS / a_1Sa_1 / a_2Sa_2$.
Greibach’s Hardest CFL

- Let $\Sigma = \{a_1, a_2, a_1', a_2', #, c\}$, $d \notin \Sigma$.
- Let D_2 be Semi-Dyck language on $\{a_1, a_2, a_1', a_2'\}$ generated by the grammar: $S \rightarrow \lambda / SS / a_1Sa_1 / a_2Sa_2$.
- Then $H = \{\lambda\} \cup \{\prod_{i=1}^{n} x_i y_i c y_i c z_i d \mid n \geq 1, y_1 y_2 ... y_n \in \#D_2, x_i, z_i \in \Sigma^*\}$,
 - $y_1 \in \# . \{a_1', a_2', a_1, a_2\}^*$,
 - $y_i \in \{a_1', a_2', a_1, a_2\}^*$ for all $i > 1$.
Greibach’s Hardest CFL

- **Theorem**: H is **not accepted** by any cl-RA-automaton.
Greibach’s Hardest CFL

- **Theorem:** H is not accepted by any cl-RA-automaton.
- Cherubini et. al defined H using *associative language description (ALD)* which uses one auxiliary symbol.

 *(in *Associative language descriptions, Theoretical Computer Science, 270 (2002), 463-491)*
Theorem: \(H \) is not accepted by any cl-RA-automaton.

Cherubini et. al defined \(H \) using *associative language description (ALD)* which uses one auxiliary symbol.

*(in *Associative language descriptions, Theoretical Computer Science, 270 (2002), 463-491)*

So we will slightly extend the definition of cl-RA-automata in order to be able to recognize more languages including \(H \).
Definition

- Let k be a positive integer.
Definition

- Let k be a positive integer.
- k-Δ-clearing restarting automaton (k-Δcl-RA-automaton for short) is a couple $M = (\Sigma, I)$, where:
Let k be a positive integer.

k-Δ-clearing restarting automaton (k-Δcl-RA-automaton for short) is a couple $M = (\Sigma, I)$, where:

- Σ is a finite nonempty alphabet, $\$ \not \in \Sigma$, $\Gamma = \Sigma \cup \{\Delta\}$.
Let k be a positive integer.

k-Δ-clearing restarting automaton (k-Δcl-RA-automaton for short) is a couple $M = (\Sigma, I)$, where:

- Σ is a finite nonempty alphabet, $\mathcal{C}, \$, $\Delta \notin \Sigma$, $\Gamma = \Sigma \cup \{\Delta\}$.
- I is a finite set of instructions of the following forms:
 - (1) $(x, z \rightarrow \lambda, y)$
 - (2) $(x, z \rightarrow \Delta, y)$
Let k be a positive integer.

k-Δ-clearing restarting automaton (k-Δcl-RA-automaton for short) is a couple $M = (\Sigma, I)$, where:

- Σ is a finite nonempty alphabet, $\emptyset, \$, $\Delta \not\in \Sigma$, $\Gamma = \Sigma \cup \{\Delta\}$.
- I is a finite set of instructions of the following forms:
 - (1) $(x, z \rightarrow \lambda, y)$
 - (2) $(x, z \rightarrow \Delta, y)$
- where $x \in LC_k$, $y \in RC_k$, $z \in \Gamma^+$.
 - left context $LC_k = \Gamma^k \cup \emptyset, \Gamma^{\leq k-1}$
 - right context $RC_k = \Gamma^k \cup \Gamma^{\leq k-1}, \$
A word $w = uzv$ can be \textit{rewritten} to usv ($uzv \vdash_M usv$) if and only if there exist an instruction $i = (x, z \rightarrow s, y) \in I$ such that:

- $x \sqsupseteq \cdot u$ (x is a suffix of $\cdot u$)
- $y \sqsubseteq v.$ (y is a prefix of $v.$)
A word $w = uzv$ can be rewritten to usv ($u \sqsubseteq v \vdash_M usv$) if and only if there exist an instruction $i = (x, z \rightarrow s, y) \in I$ such that:
- $x \sqsubseteq \epsilon$.u (x is a suffix of ϵ.u)
- $y \sqsubseteq v.$ (y is a prefix of $v.$)

A word w is accepted if and only if $w \vdash^*_M \lambda$ where \vdash^*_M is reflexive and transitive closure of \vdash_M.
Definition

A word \(w = uzv \) can be rewritten to \(usv \) \((u \not\subseteq v \vdash_M usv)\) if and only if there exist an instruction \(i = (x, z \rightarrow s, y) \in I \) such that:

- \(x \supseteq _u \) (\(x \) is a suffix of \(_u \))
- \(y \subseteq v.\$ \) (\(y \) is a prefix of \(v.\$ \))

A word \(w \) is **accepted** if and only if \(w \vdash^*_M \lambda \) where \(\vdash^*_M \) is reflexive and transitive closure of \(\vdash_M \).

The \(k\)-\(\Delta \text{cl-RA-automaton} \) \(M \) **recognizes** the language \(L(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \} \).
By Δcl-RA we will denote the class of all Δ-clearing restarting automata.
By Δcl-RA we will denote the class of all Δ-clearing restarting automata.

$L(k\cdot\Delta cl$-$RA)$ denotes the class of all languages accepted by k-Δcl-RA-automata.
Definition

- By Δcl-RA we will denote the class of all Δ-clearing restarting automata.
- $\mathcal{L}(k-\Delta cl$-$RA)$ denotes the class of all languages accepted by k-Δcl-RA-automata.
- Similarly $\mathcal{L}(\Delta cl$-$RA)$ denotes the class of all languages accepted by Δcl-RA-automata.
Definition

By Δcl-RA we will denote the class of all Δ-clearing restarting automata.

$\mathcal{L}(k$-Δcl-$RA)$ denotes the class of all languages accepted by k-Δcl-RA-automata.

Similarly $\mathcal{L}(\Delta cl$-$RA)$ denotes the class of all languages accepted by Δcl-RA-automata.

$\mathcal{L}(\Delta cl$-$RA) = \bigcup_{k \geq 1} \mathcal{L}(k$-$\Delta cl$-$RA)$.
By \(\Delta cl-RA\) we will denote the class of all \(\Delta\)-clearing restarting automata.

\(\mathcal{L}(k-\Delta cl-RA)\) denotes the class of all languages accepted by \(k-\Delta cl-RA\)-automata.

Similarly \(\mathcal{L}(\Delta cl-RA)\) denotes the class of all languages accepted by \(\Delta cl-RA\)-automata.

\(\mathcal{L}(\Delta cl-RA) = \bigcup_{k \geq 1} \mathcal{L}(k-\Delta cl-RA)\).

Note: For every \(\Delta cl-RA\) \(M\): \(\lambda \vdash^*_M \lambda\) hence \(\lambda \in L(M)\). If we say that \(\Delta cl-RA\) \(M\) recognizes a language \(L\), we mean that \(L(M) = L \cup \{\lambda\}\).
Example

- Language $L = \{a^n c b^n \mid n \geq 0\}$.
Example

- Language $L = \{a^n c b^n \mid n \geq 0\}$.
- Can be recognized by the 1-Δcl-RA $M = (\{a, b, c\}, I)$, where the instructions I are:
 - $Rc1 = (a, c \rightarrow \Delta, b)$, $Rc2 = (\emptyset, c \rightarrow \lambda, \$$)$
 - $R\Delta1 = (a, a\Delta b \rightarrow \Delta, b)$, $R\Delta2 = (\emptyset, a\Delta b \rightarrow \lambda, \$$)$
Example

- Language $L = \{a^n c b^n \mid n \geq 0\}$.
- Can be recognized by the 1-Δcl-RA $M = (\{a, b, c\}, I)$, where the instructions I are:
 - $Rc1 = (a, c \rightarrow \Delta, b)$, $Rc2 = (\emptyset, c \rightarrow \lambda, \$$)
 - $R\Delta1 = (a, a\Delta b \rightarrow \Delta, b)$, $R\Delta2 = (\emptyset, a\Delta b \rightarrow \lambda, \$$)
- For instance:
 - $aaa_c bbb \xrightarrow{Rc1} aa\Delta bb$
Example

- **Language** $L = \{a^n cb^n \mid n \geq 0\}$.
- Can be recognized by the 1-Δcl-RA $M = (\{a, b, c\}, I)$, where the instructions I are:
 - $Rc_1 = (a, c \rightarrow \Delta, b)$, $Rc_2 = (\emptyset, c \rightarrow \lambda, \$$)
 - $R\Delta_1 = (a, a\Delta b \rightarrow \Delta, b)$, $R\Delta_2 = (\emptyset, a\Delta b \rightarrow \lambda, \$$)
- **For instance:**
 - $aaacbbb \xrightarrow{Rc_1} aa\Delta bb \xrightarrow{R\Delta_1} a\Delta b$
Example

- Language $L = \{a^n cb^n \mid n \geq 0\}$.
- Can be recognized by the 1-Δcl-RA $M = (\{a, b, c\}, I)$, where the instructions I are:
 - $Rc_1 = (a, c \rightarrow \Delta, b), Rc_2 = (\emptyset, c \rightarrow \lambda, \$)
 - $R\Delta_1 = (a, a\Delta b \rightarrow \Delta, b), R\Delta_2 = (\emptyset, a\Delta b \rightarrow \lambda, \$)
- For instance:
 - $aaacbbb \vdash^{Rc_1} aa\Delta bb \vdash^{R\Delta_1} a\Delta b \vdash^{R\Delta_2} \lambda$.
- Now we see that the word $aaacbbb$ is accepted because $aaacbbb \vdash^*_M \lambda$.
Back to Greibach’s Hardest CFL

- **Theorem**: Greibach’s Hardest CFL H is recognized by a 1-Δcl-RA-automaton.
Theorem: Greibach’s Hardest CFL H is recognized by a 1-Δcl-RA-automaton.

- **Idea.** Suppose that we have $w \in H$:

 $$ w = \epsilon x_1cy_1cz_1d \ x_2cy_2cz_2d \ldots x_ncy_ncz_nd $$
Theorem: Greibach’s Hardest CFL \(H \) is recognized by a 1-\(\Delta \)-cl-RA-automaton.

- **Idea.** Suppose that we have \(w \in H \):
 \[
 w = \epsilon x_1 c y_1 c z_1 d \ x_2 cy_2 cz_2 d \ldots x_n cy_n cz_n d
 \]

- In the first phase we start with deleting letters \((\) from the right side of \(\epsilon \) and from the left and right sides of the letters \(d \).
Back to Greibach’s Hardest CFL

- **Theorem:** Greibach’s Hardest CFL H is recognized by a 1-Δcl-RA-automaton.

 - **Idea.** Suppose that we have $w \in H$:
 $$w = \$ x_1 c y_1 c z_1 d \ x_2 c y_2 c z_2 d \ldots x_n c y_n c z_n d \$$

 - In the *first phase* we start with deleting letters (from the alphabet $\Sigma = \{a_1, a_2, a_1, a_2, \#, c\}$) from the right side of $\$ and from the left and right sides of the letters d.

 - As soon as we think that we have the following word:
 $$\$ c y_1 c d \ c y_2 c d \ldots c y_n c d \$$, we introduce the Δ symbols:
 $$\$ \Delta y_1 \Delta y_2 \Delta \ldots \Delta y_n \Delta \$$
Back to Greibach’s Hardest CFL

Theorem: Greibach’s Hardest CFL H is recognized by a 1-Δcl-RA-automaton.

- **Idea.** Suppose that we have $w \in H$:

 $$w = \phi x_1cy_1cz_1d \ x_2cy_2cz_2d \ldots x_ncy_ncz_nd \$$

- In the *first phase* we start with deleting letters (from the alphabet $\Sigma = \{a_1, a_2, a_1', a_2', #, c\}$) from the right side of ϕ and from the left and right sides of the letters d.

- As soon as we think that we have the following word:

 $$\phi cy_1cd \ cy_2cd \ldots cy_ncd \$$

 we introduce the Δ symbols:

 $$\phi \Delta y_1\Delta y_2\Delta \ldots \Delta y_n\Delta \$$

- In the *second phase* we check if $y_1y_2\ldots y_n \in \#D_2$.
Instructions recognizing Hardest CFL H

- Suppose $\Sigma = \{a_1, a_2, \bar{a}_1, \bar{a}_2, \#, c\}$, $d \notin \Sigma$, $\Gamma = \Sigma \cup \{d, \Delta\}$.

<table>
<thead>
<tr>
<th>Instructions for the first phase:</th>
<th>Instructions for the second phase:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (\emptyset, $\Sigma \rightarrow \lambda$, Σ)</td>
<td>(7) ($\Gamma, a_1a_1 \rightarrow \lambda$, $\Gamma - {#}$)</td>
</tr>
<tr>
<td>(2) (Σ, $\Sigma \rightarrow \lambda$, d)</td>
<td>(8) ($\Gamma, a_2a_2 \rightarrow \lambda$, $\Gamma - {#}$)</td>
</tr>
<tr>
<td>(3) (d, $\Sigma \rightarrow \lambda$, Σ)</td>
<td>(9) ($\Gamma, a_1\Delta a_1 \rightarrow \Delta$, $\Gamma - {#}$)</td>
</tr>
<tr>
<td>(4) (\emptyset, $c \rightarrow \Delta$, $\Sigma \cup {\Delta}$)</td>
<td>(10) ($\Gamma, a_2\Delta a_2 \rightarrow \Delta$, $\Gamma - {#}$)</td>
</tr>
<tr>
<td>(5) ($\Sigma \cup {\Delta}$, $cdc \rightarrow \Delta$, $\Sigma \cup {\Delta}$)</td>
<td>(11) ($\Sigma - {c}$, $\Delta \rightarrow \lambda$, Δ)</td>
</tr>
<tr>
<td>(6) ($\Sigma \cup {\Delta}$, $cd \rightarrow \Delta$, $$)</td>
<td>(12) (\emptyset, $\Delta#\Delta \rightarrow \lambda$, $$)</td>
</tr>
</tbody>
</table>
Instructions recognizing Hardest CFL \(H \)

- Suppose \(\Sigma = \{a_1, a_2, a_1 a_2, \#, c\}, d \notin \Sigma, \Gamma = \Sigma \cup \{d, \Delta\} \).

<table>
<thead>
<tr>
<th>Instructions for the first phase:</th>
<th>Instructions for the second phase:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ((\emptyset, \Sigma \rightarrow \lambda, \Sigma))</td>
<td>(7) ((\Gamma, a_1 a_1 \rightarrow \lambda, \Gamma - {#}))</td>
</tr>
<tr>
<td>(2) ((\Sigma, \Sigma \rightarrow \lambda, d))</td>
<td>(8) ((\Gamma, a_2 a_2 \rightarrow \lambda, \Gamma - {#}))</td>
</tr>
<tr>
<td>(3) (d, (\Sigma \rightarrow \lambda, \Sigma))</td>
<td>(9) ((\Gamma, a_1 \Delta a_1 \rightarrow \Delta, \Gamma - {#}))</td>
</tr>
<tr>
<td>(4) ((\emptyset, c \rightarrow \Delta, \Sigma \cup {\Delta}))</td>
<td>(10) ((\Gamma, a_2 \Delta a_2 \rightarrow \Delta, \Gamma - {#}))</td>
</tr>
<tr>
<td>(5) ((\Sigma \cup {\Delta}, cdc \rightarrow \Delta, \Sigma \cup {\Delta}))</td>
<td>(11) ((\Sigma - {c}, \Delta \rightarrow \lambda, \Delta))</td>
</tr>
<tr>
<td>(6) ((\Sigma \cup {\Delta}, cd \rightarrow \Delta, $))</td>
<td>(12) ((\emptyset, \Delta # \Delta \rightarrow \lambda, $))</td>
</tr>
</tbody>
</table>

- In fact, there is no such thing as a \textit{first phase} or a \textit{second phase}. We have only instructions.
• Suppose $\Sigma = \{a_1, a_2, a_1 a_2, \#, c\}$, $d \notin \Sigma$, $\Gamma = \Sigma \cup \{d, \Delta\}$.

<table>
<thead>
<tr>
<th>Instructions for the first phase:</th>
<th>Instructions for the second phase:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ($\emptyset, \Sigma \to \lambda, \Sigma$)</td>
<td>(7) ($\Gamma, a_1 a_1 \to \lambda, \Gamma - {#}$)</td>
</tr>
<tr>
<td>(2) ($\Sigma, \Sigma \to \lambda, d$)</td>
<td>(8) ($\Gamma, a_2 a_2 \to \lambda, \Gamma - {#}$)</td>
</tr>
<tr>
<td>(3) ($d, \Sigma \to \lambda, \Sigma$)</td>
<td>(9) ($\Gamma, a_1 \Delta a_1 \to \Delta, \Gamma - {#}$)</td>
</tr>
<tr>
<td>(4) ($\emptyset, c \to \Delta, \Sigma \cup {\Delta}$)</td>
<td>(10) ($\Gamma, a_2 \Delta a_2 \to \Delta, \Gamma - {#}$)</td>
</tr>
<tr>
<td>(5) ($\Sigma \cup {\Delta}, cdc \to \Delta, \Sigma \cup {\Delta}$)</td>
<td>(11) ($\Sigma - {c}, \Delta \to \lambda, \Delta$)</td>
</tr>
<tr>
<td>(6) ($\Sigma \cup {\Delta}, cd \to \Delta, $$)</td>
<td>(12) ($\emptyset, \Delta # \Delta \to \lambda, $$)</td>
</tr>
</tbody>
</table>

• In fact, there is no such thing as a first phase or a second phase. We have only instructions.

• Theorem: $H \subseteq L(M)$, $H \supseteq L(M)$.
Let $u_i \vdash_M v_i$, $i = 1, 2, \ldots, n$ be a list of known reductions.
Learning Clearing Restarting Automata

Let $u_i \vdash_M v_i$, $i = 1, 2 \ldots, n$ be a list of known reductions.

An algorithm for machine learning the unknown clearing restarting automaton can be outlined as follows:
Learning Clearing Restarting Automata

- Let $u_i \vdash_M v_i$, $i = 1, 2, \ldots, n$ be a list of known reductions.
- An algorithm for machine learning the unknown clearing restarting automaton can be outlined as follows:

 Step 1: $k := 1$.
Learning Clearing Restarting Automata

- Let $u_i \vdash_M v_i, i = 1, 2, ..., n$ be a list of known reductions.
- An algorithm for machine learning the unknown clearing restarting automaton can be outlined as follows:

 Step 1: $k := 1$.

 Step 2: For each reduction $u_i \vdash_M v_i$ choose (nondeterministically) a factorization of u_i, such that $u_i = x_i z_i y_i$ and $v_i = x_i y_i$.
Learning Clearing Restarting Automata

Step 3: Construct a \(k\text{-}cl\text{-}RA\)-automaton \(M = (\Sigma, I) \), where
\[
I = \{ (\text{Suff}_k(\$, x_i), z_i, \text{Pref}_k(y_i, \$)) \mid i = 1, \ldots, n \}.
\]
Step 3: Construct a k-cl-RA-automaton $M = (\Sigma, I)$, where $I = \{ (\text{Suff}_k(\$x_i), z_i, \text{Pref}_k(y_i,\$)) | i = 1, ..., n \}$.

- $\text{Pref}_k(u)$ ($\text{Suff}_k(u)$, resp.) denotes the prefix (suffix, resp.) of length k of the string u in case $|u| > k$, or the whole u in case $|u| \leq k$.
Step 3: Construct a k-cl-RA-automaton $M = (\Sigma, I)$, where $I = \{ (\text{Suff}_k(\$.x_i), z_i, \text{Pref}_k(y_i,\$)) \mid i = 1, \ldots, n \}$.

- $\text{Pref}_k(u)$ ($\text{Suff}_k(u)$, resp.) denotes the prefix (suffix, resp.) of length k of the string u in case $|u| > k$, or the whole u in case $|u| \leq k$.

Step 4: Test the automaton M using any available information e.g. some negative samples of words.
Learning Clearing Restarting Automata

Step 3: Construct a k-cl-RA-automaton $M = (\Sigma, I)$, where $I = \{ (\text{Suff}_k(\$x_i), z_i, \text{Pref}_k(y_i,\$)) | i = 1, \ldots, n \}$.

- $\text{Pref}_k(u)$ ($\text{Suff}_k(u)$, resp.) denotes the prefix (suffix, resp.) of length k of the string u in case $|u| > k$, or the whole u in case $|u| \leq k$.

Step 4: Test the automaton M using any available information e.g. some negative samples of words.

Step 5: If the automaton passed all the tests, return M. Otherwise try another factorization of the known reductions and continue by Step 3 or increase k and continue by Step 2.
Even if the algorithm is very simple, it can be used to infer some non-trivial clearing (and after some generalization also Δ-clearing) restarting automata.
Even if the algorithm is very simple, it can be used to infer some non-trivial clearing (and after some generalization also Δ-clearing) restarting automata.

Although Δ-clearing restarting automata are stronger than clearing restarting automata, we will see that even clearing restarting automata can recognize some non-context-free languages.
Learning Clearing Restarting Automata

- Even if the algorithm is very simple, it can be used to infer some non-trivial clearing (and after some generalization also Δ-clearing) restarting automata.
- Although Δ-clearing restarting automata are stronger than clearing restarting automata, we will see that even clearing restarting automata can recognize some non-context-free languages.
- However, it can be shown, that:
- **Theorem**: \(\mathcal{L}(Δcl-RA) \subseteq CSL \), where CSL denotes the class of context-sensitive languages.
Theorem: There exists a \textit{k-cl-RA-automaton} M recognizing a language that is \textit{not} context-free.
Theorem: There exists a \textit{k-cl-RA}-automaton M recognizing a language that is not context-free.

\textbf{Idea.} We try to create a \textit{k-cl-RA}-automaton M such that $L(M) \cap \{(ab)^n \mid n > 0\} = \{(ab)^{2m} \mid m \geq 0\}$.
Learning Non-Context-Free Language

- **Theorem**: There exists a k-cl-RA-automaton M recognizing a language that is not context-free.
 - **Idea.** We try to create a k-cl-RA-automaton M such that $L(M) \cap \{(ab)^n / n > 0\} = \{(ab)^{2m} / m \geq 0\}$.
 - If $L(M)$ is a CFL then the intersection with a regular language is also a CFL. In our case the intersection is not a CFL.
Learning Non-Context-Free Language

- **Example:**
 \$ab\$
Learning Non-Context-Free Language

- **Example:**
 \[\L\{ abababababababab \} \not\vdash_M \L\{ abababababababa \} \]
 \[\L\{ ababababababababbb \} \vdash_M \L\{ abababababababa \} \]
 \[\L\{ ababababababababb \} \not\vdash_M \L\{ ababababababababbb \} \]
 \[\L\{ ababababababababb \} \vdash_M \L\{ ababababababababbc \} \]
 \[\L\{ ababababababababb \} \not\vdash_M \L\{ abababababababbb \} \]
 \[\L\{ abababababababbb \} \vdash_M \L\{ abababababababbb \} \]
Learning Non-Context-Free Language

- **Example:**

 \[\cdot \text{abababababababab} \vdash_M \cdot \text{abababababababb} \vdash_M \]

 \[\cdot \text{abababababababb} \vdash_M \cdot \text{abababababababb} \vdash_M \]

 \[\cdot \text{abababababababb} \vdash_M \cdot \text{ababababababababb} \vdash_M \]

 \[\cdot \text{abababababababb} \vdash_M \cdot \text{ababababababababb} \vdash_M \]

 \[\cdot \text{abababababababab} \vdash_M \cdot \text{abababababababab} \vdash_M \]
Learning Non-Context-Free Language

Example:

$\frac{ababababababab}{M} \frac{ababababababab}{M}$

$\frac{abababababbab}{M} \frac{abababababbbabb}{M}$

$\frac{abbabbababb}{M} \frac{ababababbbabb}{M}$

$\frac{abbbababab}{M} \frac{ababababab}{M}$

$\frac{abababab}{M} \frac{ababab}{M}$

$\frac{abab}{M}$

$\frac{abbabb}{M}$
Learning Non-Context-Free Language

- **Example:**

 \[¢ \text{ababababababababab} \vdash M \vdash ¢ \text{ababababababababb} \vdash M\]
 \[¢ \text{abababababababb} \vdash M \vdash ¢ \text{abababababababb} \vdash M\]
 \[¢ \text{abababababababb} \vdash M \vdash ¢ \text{ababababababababb} \vdash M\]
 \[¢ \text{abababababababb} \vdash M \vdash ¢ \text{ababababababababab} \vdash M\]
 \[¢ \text{abababababababab} \vdash M \vdash ¢ \text{abababababababab} \vdash M\]
 \[¢ \text{abababababababab} \vdash M \vdash ¢ \text{abababababababab} \vdash M\]
 \[¢ \text{abababababababab} \vdash M \vdash ¢ \text{abababababababab} \vdash M\]
 \[¢ \text{abababababababab} \vdash M \vdash ¢ \text{abababababababab} \vdash M\]
 \[¢ \text{abababababababab} \vdash M \vdash ¢ \text{abababababababab} \vdash M\]
 \[¢ \text{abababababababab} \vdash M \vdash ¢ \text{abababababababab} \vdash M\]
 \[¢ \text{abababababababab} \vdash M \vdash ¢ \text{abababababababab} \vdash M\]
Learning Non-Context-Free Language

Example:

\[\& \mathit{ababababababab} \vdash M \& \mathit{ababababababab\ babb} \vdash M \]
\[\& \mathit{ababababbbabb} \vdash M \& \mathit{ababbbabbbabb} \vdash M \]
\[\& \mathit{abbbabbbabbb} \vdash M \& \mathit{ababbabbbabbb} \vdash M \]
\[\& \mathit{ababbabab} \vdash M \& \mathit{abab} \vdash M \]
\[\& \mathit{abab} \vdash M \& \mathit{ab} \vdash M \& \mathit{ab} \vdash M \& \mathit{\lambda} \vdash M \& \mathit{accept} \]
Learning Non-Context-Free Language

- **Example:**
 \[\varepsilon \text{ababababababab} \vdash_M \varepsilon \text{abababababababb} \]
 \[\varepsilon \text{ababababababb} \vdash_M \varepsilon \text{abababbabbabb} \]
 \[\varepsilon \text{abababbabbabb} \vdash_M \varepsilon \text{abababbabbab} \]
 \[\varepsilon \text{abababbabab} \vdash_M \varepsilon \text{abababab} \]
 \[\varepsilon \text{abababab} \vdash_M \varepsilon \text{ababab} \]
 \[\varepsilon \text{ababab} \vdash_M \varepsilon \text{abab} \]
 \[\varepsilon \text{abab} \vdash_M \varepsilon \text{ab} \]
 \[\varepsilon \text{ab} \vdash_M \varepsilon \lambda \]

 From this sample computation we can collect 15 reductions with unambiguous factorizations and use them as an input to our algorithm.
The only variable we have to choose is k - the length of the context of the instructions.
The only variable we have to choose is k - the length of the context of the instructions.

For $k = 1$ we get the following set of instructions:

$$(b, a, b), (a, b, b), ($, ab, $$)$$
Learning Non-Context-Free Language

- The only variable we have to choose is k - the length of the context of the instructions.
- For $k = 1$ we get the following set of instructions:

 $$(b, a, b), (a, b, b), (\$, ab, \$$)$$

 But then the automaton would accept the word $ababab$ which does not belong to L:

 $ababab \vdash_M ababb \vdash_M aabbb \vdash_M abbb \vdash_M ab \vdash_M \lambda$.

Learning Non-Context-Free Language

- For $k = 2$ we get the following set of instructions:

 $(ab, a, \{b$, ba$\}), (\{\$, ba\}, b, \{b$, ba$\}), (\$, ab, \$)$
For $k = 2$ we get the following set of instructions:

$$(ab, a, \{b$, $ba\}), (\{a, ba\}, b, \{b$, $ba\}), (\$, ab, \$$)$$

But then the automaton would accept the word $ababab$ which does not belong to L:

$ababab \vdash_M abab \vdash_M ab \vdash_M b \vdash_M b \vdash_M aab \vdash_M ab \vdash_M \lambda.$
Learning Non-Context-Free Language

- For $k = 2$ we get the following set of instructions:
 \[(ab, a, \{b$, ba\}), ({\$a, ba}, b, \{b$, ba\}), (\$, ab, \$)\]
 But then the automaton would accept the word $ababab$ which does not belong to L:
 \[ababab \vdash_M abab \vdash_M abab \vdash_M ab \vdash_M ab \vdash_M \ldots\]

- For $k = 3$ we get the following set of instructions:
 \[{\$ab, bab}, a, \{b$, bab\}), ({\$a, bba}, b, \{b$, bab\}), (\$, ab, \$)\]
Learning Non-Context-Free Language

- For $k = 2$ we get the following set of instructions:
 $$(ab, a, \{b$, $ba\}), (\{\$, ba\}, b, \{b$, $ba\}), (\$, ab, \$$)$$

 But then the automaton would accept the word $ababab$ which does not belong to L:
 $$ababab \xrightarrow{\text{M}} abab \xrightarrow{\text{M}} abb \xrightarrow{\text{M}} ab \xrightarrow{\text{M}} \lambda.$$

- For $k = 3$ we get the following set of instructions:
 $$(\{\$, ab\}, a, \{b$, bab\}), (\{\$, bba\}, b, \{b$, bab\}), (\$, ab, \$$)$$

 And again we get:
 $$ababab \xrightarrow{\text{M}} abab \xrightarrow{\text{M}} abab \xrightarrow{\text{M}} abb \xrightarrow{\text{M}} ab \xrightarrow{\text{M}} \lambda.$$
Finally, for \(k = 4 \) we get the required 4-cl-RA-automaton \(M \).
Finally, for $k = 4$ we get the required 4-cl-RA-automaton M.

For this 4-cl-RA-automaton M it can be shown, that:

$$L(M) \cap \{(ab)^n \mid n>0\} = \{(ab)^{2m} \mid m \geq 0\}.$$
Conclusion

- We have seen that knowing some sample computations (or even reductions) of a cl-RA-automaton (or Δcl-RA-automaton) it is extremely simple to infer its instructions.
Conclusion

- We have seen that knowing some sample computations (or even reductions) of a cl-RA-automaton (or Δcl-RA-automaton) it is extremely simple to infer its instructions.
- The instructions of a Δcl-RA-automaton are human readable which is an advantage for their possible applications e.g. in linguistics.
Conclusion

- We have seen that knowing some sample computations (or even reductions) of a cl-RA-automaton (or Δcl-RA-automaton) it is extremely simple to infer its instructions.
- The instructions of a Δcl-RA-automaton are human readable which is an advantage for their possible applications e.g. in linguistics.
- Unfortunately, we still do not know whether Δcl-RA-automata can recognize all context-free languages.
If we generalize Δcl-RA-automata by enabling them to use any number of auxiliary symbols: $\Delta_1, \Delta_2, ..., \Delta_n$ instead of single Δ, we will increase their power up-to context sensitive languages.
Conclusion

- If we generalize Δ_{cl-RA}-automata by enabling them to use any number of auxiliary symbols: $\Delta_1, \Delta_2, \ldots, \Delta_n$ instead of single Δ, we will increase their power up-to context sensitive languages.
 - Such automata can easily accept all languages generated by context-sensitive grammars with productions in one-sided normal form: $A \rightarrow a, A \rightarrow BC, AB \rightarrow AC$
 where A, B, C are nonterminals and a is a terminal.
If we generalize \(\Delta cl\text{-}RA\text{-}automata \) by enabling them to use any number of auxiliary symbols: \(\Delta_1, \Delta_2, \ldots, \Delta_n \) instead of single \(\Delta \), we will increase their power up-to context sensitive languages.

- Such automata can easily accept all languages generated by context-sensitive grammars with productions in one-sided normal form: \(A \rightarrow a, A \rightarrow BC, AB \rightarrow AC \)
 where \(A, B, C \) are nonterminals and \(a \) is a terminal.

- Penttonen showed that for every context-sensitive grammar there exists an equivalent grammar in one-sided normal form.
Open Problems

- What is the difference between language classes of $\mathcal{L}(k-cl-RA)$ and $\mathcal{L}(k-\Delta cl-RA)$ for different values of k?
Open Problems

- What is the difference between language classes of $\mathcal{L}(k-cl-RA)$ and $\mathcal{L}(k-\Delta cl-RA)$ for different values of k?
- Can $\Delta cl-RA$-automata recognize all string languages defined by ALD’s?
Open Problems

- What is the **difference** between language classes of $\mathcal{L}(k-cl\text{-}RA)$ and $\mathcal{L}(k-\Delta cl\text{-}RA)$ for different values of k?
- Can $\Delta cl\text{-}RA$-automata recognize all string languages defined by ALD’s?
- What is the relation between $\mathcal{L}(\Delta cl\text{-}RA)$ and the class of one counter languages, simple context-sensitive grammars (they have single nonterminal), etc?
References