LINEAR ACCELERATION FOR 1-DIM CELLULAR AUTOMATA

> Véronique Terrier GREYC - Université de Caen

Context

Algorithmic aspects of cellular automata

Generic tools:

- Signals
- Particle and collisions
- Geometric transformations

Dependency graph

A directed graph which reflects the neighborhood constraint on the space-time diagram.

The local dependencies induced by the neighborhood

Affine transformation

Homogeneous transformations which apply on the graph dependency

C = (-1, 0) $T = egin{pmatrix} 1 & 1 \ 0 & 2 \end{pmatrix}$ $\Pi(site) = C + T \times (site - C)$ (0,n-1)(0,0) (n-1,0)

Affine transformation

$$\Pi(site) = \begin{cases} C + U \times (site - C) & \text{if } site \in \mathcal{X} \\ site & \text{otherwise} \end{cases}$$

Affine transformation

Which transformations can be realized on CA ?

Linear Acceleration

 $t: \mathbb{N} \to \mathbb{N}$ a function. $f \in \mathbb{Q}$ a positive ratio From any CA which recognizes some language **L** in time n + t(n), we can construct another CA which recognizes **L** in time $n + \lceil f t(n) \rceil$.

Beyer algorithm

Acceleration with a Firing Squad (Mazoyer & Reimen)

Symmetric variant (Heen)

A characteristic of the above acceleration algorithms

Two axes: ${\bf u}$, ${\bf v}$

Composition of two complementary compressions:

- $\bullet\,$ The first one compresses along ${\bf v}$ and leaves ${\bf u}$ stable
- $\bullet\,$ The second one compresses along ${\bf u}$ and leaves ${\bf v}$ stable

Validity

Which compressions can be realized on CA ?

Different requirements:

- Neighborhood constraint
- Input constraint
- Areas construction

Neighborhood constraint

The neighborhood extremities $e_1 = (-1, 1)$ and $e_2 = (1, 1)$

Their images must be contained in the neighborhood cone $\{\alpha {\bf e_1}+\beta {\bf e_2}\colon \alpha,\beta\geq 0\}$

Valid transformation

the first compression involved in the acceleration with a FS

Non valid transformation

the second compression involved in the acceleration with a FS

Input constraint

The consequences of (i, 0) are contained in the cone leaving from (i, 0)

Areas construction

The compressions apply on specific areas.

Which areas can we delineate?

In higher dimensions

Combination of 3 complementary compressions with Firing Squad and freezing