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Identifying CAs with evolutionary algorithms Introduction

Basic assumptions

We start with a binary image.

We consider 1D, deterministic, two–state CAs with symmetric
neighborhood (of given radius) and periodic boundary conditions.

We search for a CA that can reproduce the image (space–time
diagram of this CA needs to match the given image).
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Identifying CAs with evolutionary algorithms Introduction

Notation: images

Image: I = (It,s) for t ∈ T , s ∈ S = {0, 1, . . . , S − 1}, It,s ∈ {0, 1}.
The time domain T is a subset of {0, 1, . . . , T} that includes 0.

Time step: It := (It,s)s∈S – the t-th row of an image.

Initial condition: I0 represents the initial condition for CA.
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Identifying CAs with evolutionary algorithms Introduction

Notation: problem formulation

Let A be a CA. By A we will denote its global rule (global map).
Let I be a binary image, as defined on previous slide.

We define an error of reproduction of I by A as:

E(A, I) :=
∑
t∈T

∑
s∈S

∣∣It,s −At (I0) [s]
∣∣ .

The error defined here is simply a count of cells which state in the
image is different than the one evolved by the automaton.

We look for A such that E(I, A) = 0 (or as small as possible).
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Identifying CAs with evolutionary algorithms Evolutionary algorithm

Evolutionary algorithm: motivation

Direct identification methods exist and work in the case of
“complete” images.

More flexibility is need, to solve the generalized problem:

Incomplete image: missing time steps or individual cell values.
Noise in the image: noisy observation or noisy process.
Unknown neighborhood structure (partially covered in the direct
methods).

Note that in this presentation we use the evolutionary algorithm
to solve a “simple” problem where there is no noise, no missing
frames and the neighborhood is known. This is the first step
towards solving the general problem.
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Identifying CAs with evolutionary algorithms Evolutionary algorithm

Evolutionary algorithm: definition (I)

We use a standard genetic algorithm with populations build
with CAs encoded by LUTs. Population size is denoted with C.

Genetic operators:

Selection and reproduction: random selection with probability
weighted with fitness.
Crossover: random crossover (each LUT entry randomly selected
from one of two parents) – mixing probability pc.
Mutation: flipping of exactly one, randomly selected bit in the
LUT – applied with probability pm.

Elitism – we consider two algorithm variants:

Algorithm E with elite survival, with elite size of CE individuals,
Algorithm NE without elitism.
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Identifying CAs with evolutionary algorithms Evolutionary algorithm

Evolutionary algorithm: definition (II)

Fitness function should be related to error E defined earlier.

Using E directly leads to poor results!

Errors propagate in time
We count the same errors multiple times

Fitness used in our algorithms:

fit(A) := 1− 1

T S

∑
t∈T \{0}

∑
s∈S
|It,s −A(It−1)[s]| (1)

Instead of global error measure (based on E), we use a pair–wise
comparison of the time frames, i.e. we verify if the rule “works”
on pairs of time frames.

Note: for technical simplicity we normalize fitness (the maximum
value is one and represents a perfect match) and consider fitness
maximization problem.
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Identifying CAs with evolutionary algorithms Experimental results

Experiment 1: Rule 154

Algorithm NE with parameters: pc = 0.5, pm = 0.02, C = 100,
T = 100, S = 100. We look for radius–2 CA rules that match rule 154.
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Figure: Evolution of the maximum, average and minimum fitness.
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Identifying CAs with evolutionary algorithms Experimental results

Experiment 2: ECA discoverability

We measure rule discoverability (disc.) which is expressed as the
percentage of test runs resulting in finding a perfect solution (30 runs
for each rule were used, algorithm is allowed to run for 5000 iterations).
Out of 256 ECA rules, 88 rules have zero discoverability and 42 rules
have full (100%) discoverability.

rule avg. iter. disc.

75 49.57 100%
30 53.10 100%
169 53.63 100%
165 53.80 100%
106 54.77 100%

(a)

rule avg. iter. disc.

245 4997.23 3.33%
98 4993.47 3.33%
188 4987.80 3.33%
6 4982.07 3.33%
43 4981.33 3.33%

(b)

Table: Rule discoverability and average number of iterations for those ECA
that give rise to the five lowest (a) and highest (b) numbers of iterations.

Witold Bo lt, Jan M. Baetens, Bernard De Baets AUTOMATA 2013 (17.09.2013) 10 / 16



Identifying CAs with evolutionary algorithms Experimental results

Experiment 3: Algorithm E vs. Algorithm NE

Algorithms with parameters: pc = 0.5, pm = 0.02, C = 5000, CE = 500,
T = 200, S = 200. We look for a radius–4 CA.
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(a) Algorithm NE
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Figure: Evolution of maximum, average and minimum fitness.
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Identifying CAs with evolutionary algorithms Future research

Extended fitness function

To solve the general case with missing time steps, we need to
extend the fitness function.
Let T = {ti | i = 0, 1, . . . , |T |} and assume that tmax > 0 is the
length of maximum time gap (for any i we assume
ti+1 − ti ≤ tmax).
For ti ∈ {0, . . . , |T | − 1}, j ∈ {1, 2, . . . , tmax} we define the time
gap error as:

Ei,j(A, I) :=
∑
s∈S

∣∣Iti+1,s −Aj(Iti)[s]
∣∣ ,

and with that we define a generalized pair–wise error:

Ei(A, I) := min
j

Ei,j(A, I).

The generalized fitness is defined as:

fît(A, I) := 1− 1

(|T | − 1)S

∑
i

Ei(A, I).
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To solve the general case with missing time steps, we need to
extend the fitness function.
Let T = {ti | i = 0, 1, . . . , |T |} and assume that tmax > 0 is the
length of maximum time gap (for any i we assume
ti+1 − ti ≤ tmax).
For ti ∈ {0, . . . , |T | − 1}, j ∈ {1, 2, . . . , tmax} we define the time
gap error as:

Ei,j(A, I) :=
∑
s∈S

∣∣Iti+1,s −Aj(Iti)[s]
∣∣ ,
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Future research

Using fît in GA described earlier is possible, but algorithm
performance (and convergence) differs greatly depending on the
CA rule and time gaps.

Current research concentrates on more flexible rule representation,
rule decomposition and evolutionary algorithm improvements, so
that fît could be fully utilized.

Relationship between rule “discoverability” (measure of algorithm
performance) and dynamic complexity is being evaluated.
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Summary

We shown that the method works in simple cases and that
performance is reasonable.

The method is flexible (can be extended to more general cases).

We summarized the goals for future research in the project.
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Witold Bo lt

e-mail: witold.bolt@hope.art.pl
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Thank you!
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