A guided tour of asynchronous and stochastic cellular automata

Nazim Fatès

Inria Nancy, Loria - MalA team http://www.loria.fr/~fates

Automata 2013 – Gießen, Deutschland September 19, 2013

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Questions

```
vocabulary :
στόχος (stochos): goal, aim, target, expectation...
probabilitas : idea of provable, believable, etc. (a probe)
```

What separates deterministic and stochastic cellular automata ? 1st workshop on PCA held in June 2013 (Eindhoven)

- Are probabilistic CA simpler or more complex ?
- What can be determined by mathematical analysis ? by numerical simulations ?
- Are there advantages for using stochastic CAs ?

The question of robustness of models

Robustness is a common phenomenon in Nature.

- Where does it come from ?
- Can it be transposed to artificial systems ?
- If we make a discrete model of a robust phenomenon, is the model robust ?

First visual experiments with the *Game of Life*, the *majority rule*, etc.

ls the lack of robustness due to an oversimplication ? (see the PhD thesis of Olivier Bouré) → how can we make a more systematic study ?

Dictyo & the decentralized gathering problem

(c) Mark Grimson et Larry Blanton.

life cycle of *Dictyostelium discoideum* spiral waves appear and trigger aggregation

decentralised gathering problem:

particles with limited visibility and no map of the environment have to gather tightly without any centralized control

 \sim discrete stochastic CA-like model ?

A simple model [Automata 2006]

- amoebae attracted by excitation waves (chemotaxis)
- random triggering of waves, firing proba. λ
- random moves on the amoebae

open problem : find the optimal value for λ separation of two regimes ? (single vs. multiple group formation)

Irregular topologies and stochastic rules

models permanent and temporary failures

・ロト ・個ト ・ヨト ・ヨト

э

Stochastic Greenberg-Hastings model

Found in chemistry, biology, physiology (heart modelling)...

excitation received

control parameter : probability of transmission $p_{\rm T}$ **extinct** and **active** regimes ; sharp separation ; ex. TV4, M=4

Is this phenomenon robust ? : excitation level

- directed percolation is conserved
- critical threshold increases moderately

open problem:

even-odd same threshold, for von Neumann neighb. only What is the limit for $M \to \infty$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

3

Is this phenomenon robust ? : changing the topology

critical value $p_{\rm T}$ increases as more links or sites are removed always DP **but** difficulty to locate the phase transition

mixing of classical percolation and directed percolation ?

Analysis does help

mean-field analysis seems to confirm inverse proportionality law → What about binary systems ?

From fully asynchronous to α -asynchronous updating...

partial extension to α -asynchronous updating was done... some rules with brutal changes of behaviours pose problem

 $\textit{n} = 10\,000, \textit{T} = 10\,000$ What happens for $\alpha \sim 0.62$?

magnetisation vs. temp. $M \sim (T_c - T)^\gamma$

2nd order phase transitions critical exponents universality classes

Close-up on ECA 50

Rule BCDEFGH - 50:
$$f(a, b, c) = \begin{cases} \overline{b} & \text{if } (a, b, c) \neq (0, 0, 0) \\ 0 & \text{otherwise} \end{cases}$$

- healthy cell (0) infected by infected neighbour
- infected cell (1) always recovers

 $\alpha = 0.60$

・ロト ・個ト ・ヨト ・ヨト

Directed percolation

From [Hinrichsen,2000]

isotropic bond percolation

directed bond percolation

isotropic: $p_c = 1/2$, directed: $p_c < 1/2$. For a random intial configuration: $d \sim t^{-\delta}$ with $\delta = 0.1595$

Results near criticality

 $n = 20\,000$ averages made on 100 runs

f(t)=K. t ^ -0.1595 alpha=0.626 alpha=0.627 alpha=0.628 alpha=0.629 alpha=0.630 density 0.1 0.01 10 100 1000 10000 100000 time

ECA 50 : Log-Log plot of d(t) for different values of alpha

confirms directed percolation hypothesis (for nine ECA)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ���?

Analytical techniques

Restrictions to **double-quiescent** ECA under **fully asynchronous** updating Note that fixed points under synchronous and asynchronous updating are identical, but not cycles !

Questions:

- What is the set of reachable fixed points?
- What is the probability to reach a given fixed point?

うして ふゆう ふほう ふほう うらつ

How to link behaviour and convergence time?

A classification according to the convergence time

How to quantify the convergence time of a fully asynchronous CA ?

- we rescale time by a factor 1/n
- \mathcal{T}_x is the convergence time starting from $x \in Q^\mathcal{L}$
- we calculate $E[T_x]$ for all updatings
- we extract the maximum over all configurations of size n

we obtain... the worst expected convergence time in average:

$$WECT = max_{\{x \in Q^{\mathcal{L}}\}} E[T_x]$$

Theorem

Among the 25 double-quiescent ECA, 21 converge a.s., 4 diverge. WECT is :

$$0, \ln n, \Theta\{n\}, \Theta\{n^2\}, \Theta\{2^n\}, \infty$$

A classification based on the WECT

behaviour	ACE (#)	rule	01	10	010	101	convergence	
identity	204 (1)	Ø	•	•	•		0	
	200 (2)	E	· ·	•	+	•	$\Theta(\mathbf{n} \mathbf{n})$	
	232 (1)	DE	•	•	+	+	0(11 %)	
	206 (4)	В	→	•	•	•		
	132 (2)	BC	\rightarrow	\rightarrow	•	•		
	234 (4)	BDE	←	•	+	+		
"monotone"	250 (2)	BCDE	\rightarrow	\rightarrow	+	+		
monorone	202 (4)	BE	←	•	+	•	Θ(n)	
	192 (4)	EF	\rightarrow	•	+	•	0(")	
	218 (2)	BCE	←	\rightarrow	+	•		
	128 (2)	EFG	\rightarrow	<i>←</i>	+	•	1	
biased random walk	242 (4)	BCDEF	~~~>	\rightarrow	+	+		
	130 (4)	BEFG	~~~>	\leftarrow	+	•		
	226 (2)	BDEF	*~~>	•	+	+		
	170 (2)	BDEG	←	←	+	+		
random walk	178 (1)	BCDEFG	~~~>	~~~>	+	+	$\Theta(-2)$	
	194 (4)	BEF	~~~>	•	+	•	0(1)	
	138 (4)	BEG	←	\leftarrow	+	•		
	146 (2)	BCEFG	*~~>	~~~>	+	·		
biased random walk	210 (4)	BCEF	~~~>	\rightarrow	+	•	$\Theta(2^n)$	
	198 (2)	BF	*~~>	•	•	•		
no fixed-point	142 (2)	BG	←	←	•	•	ather type	
convergence	214 (4)	BCF	~~~>	\rightarrow	•	•	other type	
	150 (1)	BCFG	~~~>	~~~>	•	•	1	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

Explanations: Linear WECT

- the regions of 1s can only grow or only shrink,
- one region performs RW, the other only grows or shrinks, fusion of regions are allowed.

Tcode	W	s	01	10	Е	D
В	206	4	\leftarrow	•	•	•
BC	132	2	\leftarrow	\rightarrow	•	•
BDE	234	4	\leftarrow	•	+	+
BCDE	250	2	\leftarrow	\rightarrow	+	+
BE	202	4	\leftarrow	•	+	•
EF	192	4	\rightarrow	•	+	•
BCE	218	2	\leftarrow	\rightarrow	+	•
EFG	128	2	\rightarrow	\leftarrow	+	•
BCDEF	242	4	\longleftrightarrow	\rightarrow	+	+
BEFG	130	4	\longleftrightarrow	\leftarrow	+	•

Explanations: Quadratic WECT

One or two regions perform a radom walk, fusions allowed.

Tcode	W	s	01	10	Е	D
BDEF	226	2	\longleftrightarrow	•	+	+
BDEG	170	2	\leftarrow	\leftarrow	+	+
BCDEFG	178	1	\longleftrightarrow	\longleftrightarrow	+	+

Same but, only one fusion is allowed.

Tcode	W	S	01	10	Е	D
BEF	194	4	\longleftrightarrow	•	+	•
BEG	170	2	\leftarrow	\leftarrow	+	•
BCEFG	178	1	\longleftrightarrow	\longleftrightarrow	+	

No direct martingales here, "bouncing" phenomena

Explanations : non-converging, recurrent rules

> no fusion is allowed, one or two regions perform a random walk

Tcode	W	s	01	10	Е	D
BF	198	2	\longleftrightarrow	•	•	•
BG	142	2	\longleftrightarrow	\leftarrow		•
BCF	214	2	\longleftrightarrow	\rightarrow		•
BCFG	150	1	\longleftrightarrow	\longleftrightarrow		•

 \rightarrow Is that all ?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 約९종

Rule BCEF

А	В	С	D	Е	F	G	Η
000	001	100	101	010	011	110	111
0	1	1	0	0	0	1	1

01 frontiers perform a random walk, the 10 frontiers always extend to the right, only 1-regions can disappear

proba to increase by 1 is 2ϵ , proba to decrease by 1 is ϵ . biased random walk in the "wrong direction"

Relaxation time τ scales as 2^n : metastability

Beyond double-quiescent ECA

many open questions, guesses based on observations:

Logarithmic convergence:

to a homogeneous fixed point: 16 min. rules

BCEGH - 26

BCDEGH - 58

BEH - 74

to a heterogeneous fixed point: 10 min. rules

EH - 72

AFGH - 5

 \sim How to unify the analysis ? (new lemma ?)

Polynomial convergence

 \rightsquigarrow shows the necessity to start from a zone of 1s

Quadratic convergence : 10 rules, production of stripes

BFGH - 6

ADFGH - 37

ADGH - 45

 \rightsquigarrow strange case of ECA BDFGH - $_{38}$

Non-converging rules

no fixed point (13 rules)

AEFGH - 1

ABDEGH - 43

ACDEGH - 57

 $\begin{array}{r} + A, + H \\ + D \text{ or } E \\ + B \text{ or } E \text{ or } C \\ + G \text{ or } D \text{ or } F \\ + B \text{ or } F \text{ or } G \text{ or } C \end{array}$

Metastable or non-converging rules ?

partial stabilization with localised evolution (4 rules)

CGH - 28

AEH - 73

DH - 108

noise-like evolution (9 rules)

BDGH - 46

CDGH - 60

BDH - 110

0 only fixed point for all rules but one (ADEH) **but**, for 6 rules, **0** non-reachable: E absent from T-code for ADEH - 105, one non-reachable fixed point $(1001)^{n/4}$

 \rightarrow How to show exponential convergence of 90 (XOR2), 122 ?

The two-dimensional case

much more difficult to study analytically...first attempts:

- with Gerin on totalistic vN neighb. (Automata 2008)
- Regnault et al., minority rule

example of open problem:

• contamination rule : show that the WECT scales as $L = \sqrt{n}$

various behaviours : see the paper in the proceedings for an empirical classification that refines [Fatès & Gerin, JCA 2009]

 \rightsquigarrow How to distinguish between exponential, and infinite WECT ?

planning techniques were used to prove "automatically" the metastability of totalistic rule **10** [Höffmann et. al., 2010]

Synthesis

asynch. CAs in between deterministic and "pure" stochastic CAs

major open problem :

find analytical techniques to study the metastable rules

next steps to dive into the stochastic CA universe:

- stochastic "blend" of two rules (8808 couples)
- full exploration of the eight-dimensional hypercube
- tackle inverse problems

 \rightsquigarrow a creative role of randomness ?

うして ふゆう ふほう ふほう うらつ

Simon Hantai (blue)

Simon Hantai (red)

Simon Hantai (yellow)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

Simon Hantai (multicolor)

