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Outline 

• Background 

- Boolean Networks and Random Boolean Networks 

• Dynamic Network Formation Game model 

• Complex behavior of this model similar to that 
of Random Boolean Networks 

• Analysis of dynamics of this model in analogous 
way for analyzing Random Boolean Networks 
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Background : Overview 

• Boolean Network (BN) is  

- the system which consists of the set of Boolean variables which 
are determined in each discrete time step depending on other 
Boolean variables of the system. 

• Random Boolean Network (RBN) is one of BN with 𝑁 
Boolean Variables that 

- 𝐾 links among Boolean variables, and  
- Boolean functions determining the value of next step 

depending linked variables 

    are randomly chosen. 
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Background : Dynamics of RBNs 
• Kauffman [Kauffman,1993] studied the behavior of RBNs 

and he classified RBNs into  

- ordered phase 

- critical phase 

- chaotic phase  

     according to the number of 𝐾. 

• RBN dynamics are analyzed by various measures such as  

- the number of attractors  

- the size of basin of attraction 

- the length of cycles 

- transient times 

- G-density  

- etc.  
4 [Kauffman, 1993] S. Kauffman, The Origins of Order: Self Organization and Selection in Evolution, Oxford 

University Press, Incorporated, 1993. 



Dynamic Network Formation Game Model [Imai et al.,2010] 

• (Static) Network Formation Game (NWFG) 

- A non-cooperative game which is known in the field of 
game theory 

- Network formation by selfish and distributed 
multiple agents 

• Acceptable links and Pairwise stability 

• Dynamic NWFG model 

- This model represents network growth by introducing 
dynamicity to the static NWFG 

- Power-law degree distributions known as complex 
network 
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• Player 

– Node (=vertex) 

• Strategy 

– Intentions of forming links(=edges). 

– Each player declare that he/she wishes to form a link 
to each other player.  

• Outcome 

– If and only if both of two players wish to form a link 
between them, then it is actually formed. 

– It determines an overall outcome topology(=graph). 
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(Static) network formation game [Jackson et al., 1996] 

[Jackson et al., 1996] M.O. Jackson and A. Wolinsky, “A strategic model of social and economic 
networks,” Journal of Economic Theory 71(1) pp. 44-74, 1996. 



- Direct connection :       Maximal benefit and link cost  

- Indirect connection :    Decayed benefit and no link cost 

• Payoff Function 
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1 Direct connection 

3 indirect connections  
with distance 2. 

2 indirect connections  
with distance 3. 

Cost for information and decayed information value 

𝛿 : decay parameter, 0 < 𝛿 < 1 
𝑐𝑖𝑗 : cost parameter which are  
       randomly sampled from (0, 𝑅] 

𝑑𝑖𝑗 : distance between 𝑖 and 𝑗 



Acceptable Links and Pairwise stability 

• Acceptable link  

- For adding : Both of two involved players’ payoffs increase 
(or one remain)  

 

 

- For removing : At least one involved players’ payoff 
increases (or remain) 

 

 

• Pairwise stable topology 

- No acceptable links in the topology 

- A solution concept for NWFG 
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• A time series of the static NWFG. 

• At most only one acceptable link changes at each time 
step 𝑡. 

 

 

 

 

• The most payoff improving link among all acceptable 
links can change at each time step 𝑡. 

• This process continues to converge to any pairwise 
stable attractors or cycle attractors. 

[Imai et al., 2010] T. Imai, A. Tanaka, “A Game Theoretic Model for AS Topology Formation with the Scale-
Free Property,” IEICE TRANSACTIONS on Information and Systems, Vol.E93-D, No.11, pp.3051-3058, 2010. 
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Dynamic NWFG model [Imai et al.,2010] 



1t 10t 20t

70t 120t 145t (Pairwise Stable) 

(100nodes, δ＝0.9 , 𝑐 ∈ 0.0,20.0 ) 

Topology transition by dynamic NWFG Model 



Properties of dynamic NWFG model 

• Deterministic state transition process depending only 
on the current state 

• Point Attractors and Cycle Attractors 

• All Point Attractors are Pairwise Stable topology which 
is the solution concept of static NWFG. 
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• This model tends to emerge 
scale-free topology from 
initial empty topology in 
some settings.  

Degree distribution of emerged topologies 
by dynamic NWFG model. [Imai et al.,2010] 
(𝛿 = 0.9, 𝑅 = 20.0, with transfer) 
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: State(=Topology)  
𝛿 = 0.9, 

𝑐𝑎𝑏 = 𝑐𝑏𝑎= 0.3, 
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13 

𝑔0 

0.00 

0.00 0.00 

𝑔1 

0.00 

0.80 0.80 

𝑔7 

0.90 

1.40 1.10 

𝑔4 

0.60 

0.60 0.00 
𝑔2 

0.30 

0.00 0.30 

a 

b c 

a 

b c 

a 

b c 

a 

b c 

𝑔3 

1.11 

1.61 1.10 

a 

b c 𝑔6 

0.90 

1.41 1.11 

a 

b c 𝑔5 

1.41 

1.40 1.61 

a 

b c 

a 

b c 

: Adjacent Relationship 

: State Transition 
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: State Transition 

: Basin of Attraction 

: Attractor 
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𝛿 = 0.9, 
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Example 1:  
# of nodes = 4 

• 𝑛 = 4 

• (# of states) 

  = 2
𝑛
2 = 26 = 64 

• 𝛿 = 0.9 
• 𝑅 = 2.0 
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• 𝑛 = 5 

• (# of states) 

  = 2
𝑛
2 = 210 = 1024 

• 𝛿 = 0.9 
• 𝑅 = 2.0 

Example 2:  
# of nodes = 5 
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a) RBN [Kadanoff et al., 2002] b) Dynamic NWFG model 

[Kadanoff et al., 2002] L. Kadanoff et al., “Boolean dynamics with random couplings,” eprint 
arXiv:nlin/020462, Apr. 2002. 

• Dynamic NWFG model is also a kind of Boolean Networks. 

• Complex state space is similar to that of RBNs. 

• Analysis measures for RBN can also be applied to analysis of 
the dynamic NWFG model. 



Investigation of partitioned state space 

• The state space structures are specified by  

- decay parameter 𝛿 

- randomly sampled cost parameters 𝑐𝑖𝑗 ∈ (0, 𝑅]. 

• We investigated 100 patterns of partitioned state 
space made by random parameters by observing 

- The number of attractors 

- Size of basins of attraction 

• Settings : 

- # of nodes = 6 
› size of whole state space = 32,768 

- 𝛿 is fixed to 0.9,  
- 𝑅 = 1.0 and 𝑅 = 5.0 19 
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𝑅 = 1.0 

𝑅 = 5.0 

Properties of partitioned state space 
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𝑅 = 1.0 

𝑅 = 5.0 

Only one attractor with  
extremely huge size (=32768) basin 

Properties of partitioned state space 
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𝑅 = 1.0 

𝑅 = 5.0 

Similar to an exponential 
function with a negative 
exponent 

Only one attractor with  
extremely huge size (=32768) basin 

Properties of partitioned state space 

A large number of 
attractors with micro 
size basin 
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In the cases of some parameter sets, whole state space is 
partitioned into basins of the diverse number and diverse size. 

𝑅 = 1.0 

𝑅 = 5.0 

Similar to an exponential 
function with a negative 
exponent 

Only one attractor with  
extremely huge size (=32768) basin 

Properties of partitioned state space 

A large number of 
attractors with micro 
size basin 



Evaluation of validity of Monte Carlo method 

• We can do exhaustive investigations over whole 
topology sets, in the case of small nodes. 

• Truthfully, we want to know about dynamics of 
topologies in the case of larger nodes. 

 

• Monte Carlo method is used to estimate properties 
of state space by little number of random samples. 

• Is the Monte Carlo method sufficiently effective for 
property estimation of state space of dynamic 
NWFG model? 
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- Sampling rate :  
› 0.001, 0.01, 0.01, 0.2 and 0.5 

• 𝑅 = 5.0 

- Less diversity  
- Only a small number of samples 

is needed to detect all attractors 
certainly. 

• 𝑅 = 1.0 

- More diversity 
- A large number of samples is 

needed for certain detection. 
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Results 
(# of actually detected attractors) 

(Total # of attractors) 

𝑅 = 1.0 

𝑅 = 5.0 

Attractor Detection Rate 

Monte Carlo approach may not sufficiently be effective because it 
need much samples for seriously complex state space. 

= 



Summary 

• Introduction of dynamic NWFG model 

• The analysis measures for RBN can also be applied to 
analysis of the dynamic NWFG model. 

• The partitioned state space of the dynamic NWFG model 
is highly diverse in some settings.  

• Is Monte Carlo method sufficiently efficient? 

- Good in the case that partitioned state space is not so diverse, 
- Not so good in the case that it is seriously diverse. 

• Future Work 

- We still stand on the entrance of Discrete Dynamic System 
analysis.  

› We need to compare the dynamic NWFG model more precisely to 
other Boolean Network. 

- Classification of the dynamic NWFGs by parameters. 
26 



APPENDIX 
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Position of our research  

• Cross point of  

- Complex Networks,  
- Game Theory and 
- Computational Science 

• Complex Networks 

- How complex networks are generated? 
- “Why” complex networks are generated? 

• Game Theory and Computational Science 

- Computational/Algorithmic Game Theory 
› Limited capability of  

• observation of the situation 
• optimization of its own strategy 

› Refinement of solution concepts 
› Path dependency 
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Exponential increase of the size of state space 

29 
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• The dynamic NWFG model (and topology transition models in 
general) give an additional explanation to a state which has only 
been a bit sequence. 30 



𝛿 = 0.9, 𝑅 = 3.0 

31 

 



Transient Time 

• Transient time is  

• ランダムに100個生成されたパターンで，ある平
均Transient Timeを持つアトラクタがいくつ存在
するか，を示したグラフ． 

32 

𝛿 = 0.9, 𝑅 = 1.0 𝛿 = 0.9, 𝑅 = 3.0 𝛿 = 0.9, 𝑅 = 5.0 



Q&A 

• 対称性がなぜ破れているのか，説明する必要
があるかもしれない． 

• 現在の状態が望ましくないアトラクタをもたらす
場合，コストを変化させることによって状態空間
の性質を変化させて，より望ましいアトラクタに
導くことができるかもしれない． 
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